9514 1404 393
Answer:
(a) 6² +3² +1² +1² = 47
(b) 5² +4² +2² +1² +1² = 47
(c) 3³ +4² +2² = 47
Step-by-step explanation:
It can work reasonably well to start with the largest square less than the target number, repeating that approach for the remaining differences. When more squares than necessary are asked for, then the first square chosen may need to be the square of a number 1 less than the largest possible.
The approach where a cube is required can work the same way.
(a) floor(√47) = 6; floor(√(47 -6^2)) = 3; floor(√(47 -45)) = 1; floor(√(47-46)) = 1
__
(b) floor(√47 -1) = 5; floor(√(47-25)) = 4; ...
__
(c) floor(∛47) = 3; floor(√(47 -27)) = 4; floor(√(47 -43)) = 2
Answer:
54000
Step-by-step explanation:
use multiplication
do ur own work if you want to see if I'm wrong
Answer:
n(number)= 0.70588235294
Step-by-step explanation:
doing 12/17 we get 0.70588235294 do n=0.70588235294x12=17
5+5=10, 5+6=11, 5+7=12,etc.