Answer:
<h2>C. placing carrier proteins in the membrane.</h2>
Explanation:
If there is no barrier preventing molecules from moving molecules, then there will be large movement of molecules from an area of high concentration to an area of low concentration. This passive process is known as diffusion. The phospholipid bilayer of a cell's membrane works as a barrier to large molecules, ions, and most hydrophilic molecules. Whereas small hydrophobic molecules can pass freely through the phospholipid bilayer, other molecules and ions are transported across the cell membrane with the help of transport proteins. Some transport proteins, allowing hydrophilic molecules and ions to passively move through them and across the cell membrane.
Examples: carrier proteins and channel proteins.
Placing carrier proteins in the cell membrane will allow the molecule to reach equal concentrations on the both the sides of the membrane and maintain that way over long time. In contrast, transport proteins known as pumps will use cellular energy, usually in the form of ATP, to transport molecules.
Placing equal numbers of intracellularly directed and extracellularly directed pumps would also equalize the concentrations of a molecule long over time. Pumps are to transport molecules against their concentration gradient, such as the sodium-potassium pump continuously moves sodium ions out of a cell.
Through the use of carrier proteins, there is equalization of concentrations of a hydrophilic molecule. This equalize the numbers of molecules on the inside and outside of the cell, but the pumps would continue moving the molecule inward, eventually resulting in more molecules inside of the cell than out.
90% which is the highest percentage but remember that alcohol does not kill the virus
Answer:
b and d btw are you taking an exam? Or test?
Explanation:
Answer:
D
Explanation:
All of the above are parts of the climate that could be subject to change.
The oldest true fossils are trace fossils called Stromatolites found in Australia, and dated between 3.5 to 3.3 billion years old.
Raphael Baumgartner and their team have finally uncovered evidence of organic matter in the ancient rock formations known as stromatolites found at the Dresser Formation fossil site in the Pilbara region of Western Australia. They detail their findings in a new article published in the journal Geology.
With a variety of methods, including scanning electron microscopy, scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, Raman spectroscopy, nano-scale secondary ion mass spectrometry, and stable carbon isotope analysis, the researchers examined the samples in thin slices.
According to the team's analyses, pyrite, a mineral with many tiny pores, makes up the majority of the stromatolites. Additionally, the pyrite contains nitrogen-bearing organic material and strands and filaments of organic material that closely resemble the remains of microbial biofilm colonies.
To know more about stromatolites click here
brainly.com/question/11623402
#SPJ4