Answer: it is 3
Step-by-step explanation:
Answer:
- (3, 5), (1, 2) and (5, 1)
Step-by-step explanation:
Make three systems with pairs of lines and solve them to work out the vertices.
1) <u>Line 1 and line 2</u>
<u>Double the second equation and subtract equations:</u>
- -3x + 2y - 2(2x + y) = 1 - 2(11)
- -3x - 4x = 1 - 22
- -7x = - 21
- x = 3
<u>Find y:</u>
- 2*3 + y = 11
- 6 + y = 11
- y = 11 - 6
- y = 5
The point is (3, 5)
2) <u>Line 1 and line 3</u>
<u>Triple the second equation and add up equations:</u>
- -3x + 2y + 3(x + 4y) = 1 + 3(9)
- 2y + 12y = 1 + 27
- 14y = 28
- y = 2
<u>Find x:</u>
- x + 4*2 = 9
- x + 8 = 9
- x = 1
The point is (1, 2)
3) <u>Line 2 and line 3</u>
<u>Double the second equation and subtract the equations:</u>
- 2x + y - 2(x + 4y) = 11 - 2(9)
- y - 8y = 11 - 18
- - 7y = - 7
- y = 1
<u>Find x:</u>
- x + 4*1 = 9
- x + 4 = 9
- x = 5
The point is (5, 1)
Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 
Sophia is 12. Four times that is 48. If her mother is 5 years less than this, she is 43.
(12 x 4) - 5 = 43
<span>0.316 in expanded form is= 0.3 + 0.01 + 0.006. </span>