1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Valentin [98]
3 years ago
9

If Angela $98,760 home appreciates 3% a year will she have enough appreciation to try to sell a home for a $15,000 profit in fiv

e years yes or no
Mathematics
1 answer:
olasank [31]3 years ago
3 0

Answer:

Yes

Step-by-step explanation:

So, first, in 5 years, the home will have appreciated by 15%. (5 years times 3%). Once you find 15% of 98760, which is 658400, you have to add it on to the original price of the house. At this point, the house costs 757160 dollars. You then subtract the original price of the house from the price of the house 5 years from now. (757160-98760) and you get 658400. As you can tell, 658400>15000. Therefore, the answer is yes.

You might be interested in
A 2- liter bottle of water has a mass of 2 kilograms. How many grams is that?
Bas_tet [7]
2000 grams. 1 kilogram = 1000 grams
7 0
3 years ago
What is 5/12 times 3 in multiply fractions
katrin [286]
Hey there 

5/12 times 3 = 5/4
5/4 is an improper fraction 
so it is changed to <span>= 1  1/4</span>

The answer is 1  1/4

hope this helps you 
4 0
3 years ago
Read 2 more answers
1/4 Divided by 16 3/4 (Detailed, worked out answer please)
scZoUnD [109]
14 would probably be the answer idk
8 0
3 years ago
Read 2 more answers
Need help the last one is 1,-5 would really appreciate it
artcher [175]

Answer:

3,1

Step-by-step explanation:

4 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • Use the formula V = s³, where V is the volume and s is the edge length of the cube, to solve this problem.
    12·1 answer
  • What mathematical operation applies (addition, subtraction, multiplication or division) and write your equation in the box below
    7·1 answer
  • And for this one help me please for 12 points ✨
    7·1 answer
  • 10+____=3<br> ok this is the last one
    8·2 answers
  • Since an instant replay system for tennis was introduced a a major tournament, men challenged 1390 referee calls, with the resul
    8·1 answer
  • 2(x+11)=3x=42simplify ​
    6·1 answer
  • In △JKL, _______ is the leg opposite ∠J and _______ is the leg adjacent to ∠J. segment LK; segment JK segment LK; segment JL seg
    11·1 answer
  • For questions 5-9 list all the polygons shown that fit each description.If there could be no such polygon, explain why
    14·1 answer
  • 2m+11=-73 what number does m=?
    9·2 answers
  • Trying to get a 100% in my IXL!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!