1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Afina-wow [57]
4 years ago
7

An integer is chosen at random from 1 to 50 inclusive. Find the probability that the chosen integer is not divisible by 2, 7, or

9
Mathematics
2 answers:
Ber [7]4 years ago
5 0
18/50 = 0.36  HOPE THIS HELPS

Vladimir [108]4 years ago
3 0
Probablity=desiredoutcomes/total possible

desired
hmm,

there are 50 numbers in the range from 1 to 50

half the numbers from 1 to 50 are divisiblle by 2
sothat leasves all the odd numbers

the odd multilules of 7 are, 7, 21, 35, 49
the odd mulitpules of 9 are 27, 45

there are  6 more tobe minused

25-6=19
19/50 is the proababltity o
which is 38%
You might be interested in
How do you write (x−2)4 in expanded form?
Sveta_85 [38]

Answer: (x)(4) + (-2)(4)

Step-by-step explanation:

You just show that you multiply both x and -2 by 4 with distributive property

7 0
3 years ago
Find the value of x that makes A || B.
kumpel [21]

Answer:

the answer is 15 I just took the assessment

3 0
3 years ago
15. For each of the following, write the probability as the intersection of two events. Then, indicate whether the two events ar
LuckyWell [14K]

Answer:

Step-by-step explanation:

a. The probability of selecting a 6 from the first draw and a 7 on the second draw when two balls are selected without replacement from a container with 10 balls numbered 1 to 10

Not independent because without replacement

Prob for both = \frac{1}{10} \frac{1}{9} \\=\frac{1}{90}

b. The probability of selecting a 6 on the first draw and a 7 on the second draw when two balls are selected with replacement from a container with 10 balls numbered 1 to 10

Here independent because with replacement makes probability independent.

Prob for both = P(A) *P(B) = \frac{1}{10} *\frac{1}{10} \\=\frac{1}{100}d

c. The probability that two people selected at random in a shopping mall on a very busy Saturday both have a birthday in the month of June. Assume that all 365 birthdays are equally

likely, and ignore the possibility of a February 29 leap-year birthday.

Here independent because one person birthday will not affect the other person birthday

Prob for both = (\frac{30}{365})^2\\ =\frac{25}{5329}

d. The probability that two socks selected at random from a drawer containing 10 black socks and 6 white socks will both be black

Prob for I sock black = 10/16 and II sock black if first sock is black = 9/15

Hence not independent

Prob for both = \frac{10C2}{16C2} \\=\frac{3}{8}

 

 

5 0
4 years ago
Check out attachment:) I don't understand how do you find out the length ?? pls help with explanation thx
hjlf

Answer:

x=3.89

Step-by-step explanation:

I'll go in depth for you.

Before we figure out what we do, let understand what we know about this triangle.

  • We know that both triangles have a angle that measure 27°.
  • We also know EH=5
  • FG=9
  • ZG=7
  • We need to know how to find EZ

Notice how line EG and HF intersect at Angle Z. We know that if two lines intersect at an angle, it form angles called vertical angles. This means that the two angles that are vertical to each other are congruent.

This means that angle Z in both triangles both measure the same.

Now since both triangles have 2 congruent corresponding angles, we can say that the <em>Triangles</em><em> </em><em>are</em><em> </em><em>Similar</em><em> </em><em>due</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>Angle-Angle</em><em> </em><em>Postulate</em><em>.</em>

<em>"</em><em>If</em><em> </em><em>two</em><em> </em><em> </em><em>corresponding</em><em> </em><em>angles</em><em> </em><em>of</em><em> </em><em>two</em><em> </em><em>triangles</em><em> </em><em>are</em><em> </em><em>congruent</em><em>,</em><em> </em><em>then</em><em> </em><em>the</em><em> </em><em>two</em><em> </em><em>triangles</em><em> </em><em>are</em><em> </em><em>similar</em><em>.</em><em>"</em>

<em>What</em><em> </em><em>is</em><em> </em><em>mean</em><em> </em><em>when</em><em> </em><em>Triangles</em><em> </em><em>are</em><em> </em><em>similar</em><em>?</em><em> </em>

<em>It</em><em> </em><em>means</em><em> </em><em>that</em><em> </em><em>the</em><em> </em><em>similar</em><em> </em><em>triangles</em><em> </em><em>corresponding</em><em> </em><em>angles</em><em> </em><em>are</em><em> </em><em>equal</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>their</em><em> </em><em>sides</em><em> </em><em>are</em><em> </em><em>in</em><em> </em><em>proportion</em><em>.</em>

<em>The</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>are</em><em> </em>

<em>EH</em><em> </em><em>and</em><em> </em><em>GF</em>

<em>EZ</em><em> </em><em>and</em><em> </em><em>ZG</em>

<em>HZ</em><em> </em><em>and</em><em> </em><em>HF</em><em>.</em>

<em>Our</em><em> </em><em>proportion</em><em> </em><em>formula</em><em> </em><em>for</em><em> </em><em>similar</em><em> </em><em>triangle</em><em>s</em><em> </em><em>is</em><em> </em>

<em>Any</em><em> </em><em>two</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>first</em><em> </em><em>triangle</em><em> </em><em>divided</em><em> </em><em>by</em><em> </em><em>each</em><em> </em><em>other</em><em> </em><em>must</em><em> </em><em>equal</em><em> </em><em>the</em><em> </em><em>two</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>second</em><em> </em><em>triangles</em><em> </em><em>divided</em><em> </em><em>by</em><em> </em><em>each</em><em> </em><em>other</em><em> </em><em>respectively</em><em>.</em>

<em>We</em><em> </em><em>know</em><em> </em><em>FG</em><em> </em><em>and</em><em> </em><em>ZG</em><em> </em><em>so</em><em> </em><em>let</em><em> </em><em>set</em><em> </em><em>up</em><em> </em><em>our</em><em> </em><em>first</em><em> </em><em>fraction</em>

<em>\frac{fg}{zg}</em>

<em>The</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>both</em><em> </em><em>are</em><em> </em>

  • <em>EH</em><em> </em><em>and</em><em> </em><em>EZ</em><em> </em><em>respectively</em><em> </em><em> </em><em>so</em><em> </em><em>our</em><em> </em><em>proportion</em><em> </em><em> </em><em>looks</em><em> </em><em>like</em>
  • <em>\frac{fg}{zg}  =  \frac{eh}{ez}</em>
  • <em>Plug</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>values</em><em> </em><em>for</em><em> </em><em>each</em><em>.</em><em> </em><em>Let</em><em> </em><em>x</em><em> </em><em>represent</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>EZ</em>
  • <em>\frac{9}{7}  =  \frac{5}{x}</em>
  • <em>Cross</em><em> </em><em>Multiply</em>
  • <em>9x = 35</em>
  • <em>x = 3 \frac{8}{9}  = 3.89</em>
  • <em>So</em><em> </em><em>x</em><em>=</em><em>3</em><em>.</em><em>8</em><em>9</em>
3 0
3 years ago
Round 4.9 to the nearest whole number<br>​
mina [271]

Answer:

5

Step-by-step explanation:

4.9 is closer to 5 than 4

7 0
3 years ago
Read 2 more answers
Other questions:
  • What is (4x+3)(x-7)=90
    11·2 answers
  • What is equivalent to the square root of -80
    5·1 answer
  • if the side of a traingular fiels is in ratio of 6:9:10. if it perimeter is 2500m what is the area of that field​
    10·1 answer
  • 50 POIINTS!!!
    7·1 answer
  • Ms. Maiden is grading quizzes. She already
    9·1 answer
  • Please help me with this
    12·1 answer
  • Please help me asap. picture is linked
    14·1 answer
  • Which value is greater than 5/8 or 60 %
    11·2 answers
  • The bar graph shows the number of dinner reservations at a restaurant for one week. What percent of the reservations were for Fr
    9·1 answer
  • HELP ME DO THIS PLZ
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!