1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brilliant_brown [7]
3 years ago
14

Check out attachment:) I don't understand how do you find out the length ?? pls help with explanation thx

Mathematics
1 answer:
hjlf3 years ago
3 0

Answer:

x=3.89

Step-by-step explanation:

I'll go in depth for you.

Before we figure out what we do, let understand what we know about this triangle.

  • We know that both triangles have a angle that measure 27°.
  • We also know EH=5
  • FG=9
  • ZG=7
  • We need to know how to find EZ

Notice how line EG and HF intersect at Angle Z. We know that if two lines intersect at an angle, it form angles called vertical angles. This means that the two angles that are vertical to each other are congruent.

This means that angle Z in both triangles both measure the same.

Now since both triangles have 2 congruent corresponding angles, we can say that the <em>Triangles</em><em> </em><em>are</em><em> </em><em>Similar</em><em> </em><em>due</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>Angle-Angle</em><em> </em><em>Postulate</em><em>.</em>

<em>"</em><em>If</em><em> </em><em>two</em><em> </em><em> </em><em>corresponding</em><em> </em><em>angles</em><em> </em><em>of</em><em> </em><em>two</em><em> </em><em>triangles</em><em> </em><em>are</em><em> </em><em>congruent</em><em>,</em><em> </em><em>then</em><em> </em><em>the</em><em> </em><em>two</em><em> </em><em>triangles</em><em> </em><em>are</em><em> </em><em>similar</em><em>.</em><em>"</em>

<em>What</em><em> </em><em>is</em><em> </em><em>mean</em><em> </em><em>when</em><em> </em><em>Triangles</em><em> </em><em>are</em><em> </em><em>similar</em><em>?</em><em> </em>

<em>It</em><em> </em><em>means</em><em> </em><em>that</em><em> </em><em>the</em><em> </em><em>similar</em><em> </em><em>triangles</em><em> </em><em>corresponding</em><em> </em><em>angles</em><em> </em><em>are</em><em> </em><em>equal</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>their</em><em> </em><em>sides</em><em> </em><em>are</em><em> </em><em>in</em><em> </em><em>proportion</em><em>.</em>

<em>The</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>are</em><em> </em>

<em>EH</em><em> </em><em>and</em><em> </em><em>GF</em>

<em>EZ</em><em> </em><em>and</em><em> </em><em>ZG</em>

<em>HZ</em><em> </em><em>and</em><em> </em><em>HF</em><em>.</em>

<em>Our</em><em> </em><em>proportion</em><em> </em><em>formula</em><em> </em><em>for</em><em> </em><em>similar</em><em> </em><em>triangle</em><em>s</em><em> </em><em>is</em><em> </em>

<em>Any</em><em> </em><em>two</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>first</em><em> </em><em>triangle</em><em> </em><em>divided</em><em> </em><em>by</em><em> </em><em>each</em><em> </em><em>other</em><em> </em><em>must</em><em> </em><em>equal</em><em> </em><em>the</em><em> </em><em>two</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>second</em><em> </em><em>triangles</em><em> </em><em>divided</em><em> </em><em>by</em><em> </em><em>each</em><em> </em><em>other</em><em> </em><em>respectively</em><em>.</em>

<em>We</em><em> </em><em>know</em><em> </em><em>FG</em><em> </em><em>and</em><em> </em><em>ZG</em><em> </em><em>so</em><em> </em><em>let</em><em> </em><em>set</em><em> </em><em>up</em><em> </em><em>our</em><em> </em><em>first</em><em> </em><em>fraction</em>

<em>\frac{fg}{zg}</em>

<em>The</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>both</em><em> </em><em>are</em><em> </em>

  • <em>EH</em><em> </em><em>and</em><em> </em><em>EZ</em><em> </em><em>respectively</em><em> </em><em> </em><em>so</em><em> </em><em>our</em><em> </em><em>proportion</em><em> </em><em> </em><em>looks</em><em> </em><em>like</em>
  • <em>\frac{fg}{zg}  =  \frac{eh}{ez}</em>
  • <em>Plug</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>values</em><em> </em><em>for</em><em> </em><em>each</em><em>.</em><em> </em><em>Let</em><em> </em><em>x</em><em> </em><em>represent</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>EZ</em>
  • <em>\frac{9}{7}  =  \frac{5}{x}</em>
  • <em>Cross</em><em> </em><em>Multiply</em>
  • <em>9x = 35</em>
  • <em>x = 3 \frac{8}{9}  = 3.89</em>
  • <em>So</em><em> </em><em>x</em><em>=</em><em>3</em><em>.</em><em>8</em><em>9</em>
You might be interested in
Describe and correct the error(s) made in each of the problems below.
ladessa [460]

Answer:

\displaystyle \frac{1-x}{(5-x)(-x)} =-\frac{x-1 }{ x(x-5)}

\displaystyle \frac{5}{s}\times \frac{2}{5} =\frac{2}{s}

Step-by-step explanation:

<u>Errors in Algebraic Operations </u>

It's usual that students make mistakes when misunderstanding the application of algebra's basic rules. Here we have two of them

  • When we change the signs of all the terms of a polynomial, the expression must be preceded by a negative sign
  • When multiplying negative and positive quantities, if the number of negatives is odd, the result is negative. If the number of negatives is even, the result is positive.
  • Not to confuse product of fractions with the sum of fractions. Rules are quite different

The first expression is

1-x / (5-x)(-x)=x-1 / x(x-5)

Let's arrange into format:

\displaystyle \frac{1-x}{(5-x)(-x)} =\frac{x-1 }{ x(x-5)}

We can clearly see in all of the factors in the expression the signs were changed correctly, but the result should have been preceeded with a negative sign, because it makes 3 (odd number) negatives, resulting in a negative expression. The correct form is

\displaystyle \frac{1-x}{(5-x)(-x)} =-\frac{x-1 }{ x(x-5)}

Now for the second expression

5/s+2/5=2/s

Let's arrange into format

\displaystyle \frac{5}{s}+\frac{2}{5} =\frac{2}{s}

It's a clear mistake because it was asssumed a product of fractions instead of a SUM of fractions. If the result was correct, then the expression should have been

\displaystyle \frac{5}{s}\times \frac{2}{5} =\frac{2}{s}

6 0
3 years ago
Please find me the value of x​
erastova [34]

Answer:

x = 60°

Step-by-step explanation:

See picture below.  When two parallel lines are cut by a transversal there are some special relationships.

4 0
2 years ago
Read 2 more answers
What is the ratio of the number of sides of a quadrilateral to the number of sides of a pentagon?
IgorC [24]
4:5 because a quadrilateral has 4 sides and a pentagon has 5 sides
3 0
3 years ago
Which represents the reflection of f(x)=√x over the y-axis?
ololo11 [35]

We are looking for the graph of y=\sqrt{-x}. which is shown in the attached image.

8 0
2 years ago
What is the slope? (10 points)
alukav5142 [94]
The answer is C 1/2 hope this helps :)
3 0
3 years ago
Other questions:
  • True or false to graph data points together you need to use a coordinate plane
    15·1 answer
  • Brainliest to best answer
    10·1 answer
  • Help me plzzz 100pts
    15·2 answers
  • (17) Please help with math!
    13·1 answer
  • Write the sum using summation notation, assuming the suggested pattern continues.
    8·1 answer
  • Eugenes School is selling tickets to a play on the first day of ticket sales the school sold eight senior citizen tickets and tw
    11·1 answer
  • clayton open a savings account 4 years ago. the account earns 8% interest, compounded monthly. if the current balance is $200.00
    9·1 answer
  • Answer the question please
    15·2 answers
  • What is the value of angle s
    7·2 answers
  • Find the median and mean of the data set below:<br> 48,32,5, 13, 11, 22, 2
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!