1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Xelga [282]
3 years ago
12

PLS HELP. Find the first four terms of the recursive sequence defined by the following formula:

Mathematics
1 answer:
Gnoma [55]3 years ago
3 0

Answer:

see explanation

Step-by-step explanation:

Given the recursive formula a_{n} = \frac{a_{n-1} }{4} and

a_{4} = 2 \frac{1}{4} = \frac{9}{4}, then

\frac{a_{3} }{4} = \frac{9}{4} ( multiply both sides by 4 )

a₃ = 4 × \frac{9}{4} = 9

\frac{a_{2} }{4} = 9 ( multiply both sides by 4 )

a₂ = 36

\frac{a_{1} }{4} = 36 ( multiply both sides by 4 )

a₁ = 144

The first 4 terms are

144, 36, 9, 2 \frac{1}{4}

You might be interested in
Need help with this one
Tatiana [17]
Its D

i hope this helps
6 0
3 years ago
Subtract the following complex numbers: (4+4i)-(13+17i) ??
Lady bird [3.3K]

Before combining the real parts and the imaginary parts, line them up vertically as follows:

 4   +   4i

-13   -  17i

--------------            Now add up each column.

 -9 - 13i   (Answer A)

6 0
3 years ago
Read 2 more answers
Eric has 4 bags of marbles and 6 single marbles how many marbles does eric have
matrenka [14]
Eric has 46 total marbles (4*10)+6

6 0
3 years ago
How to do the inverse of a 3x3 matrix gaussian elimination.
nata0808 [166]

As an example, let's invert the matrix

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}

We construct the augmented matrix,

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

On this augmented matrix, we perform row operations in such a way as to transform the matrix on the left side into the identity matrix, and the matrix on the right will be the inverse that we want to find.

Now we can carry out Gaussian elimination.

• Eliminate the column 1 entry in row 2.

Combine 2 times row 1 with 3 times row 2 :

2 (-3, 2, 1, 1, 0, 0) + 3 (2, 1, 1, 0, 1, 0)

= (-6, 4, 2, 2, 0, 0) + (6, 3, 3, 0, 3, 0)

= (0, 7, 5, 2, 3, 0)

which changes the augmented matrix to

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

• Eliminate the column 1 entry in row 3.

Using the new aug. matrix, combine row 1 and 3 times row 3 :

(-3, 2, 1, 1, 0, 0) + 3 (1, 1, 1, 0, 0, 1)

= (-3, 2, 1, 1, 0, 0) + (3, 3, 3, 0, 0, 3)

= (0, 5, 4, 1, 0, 3)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 5 & 4 & 1 & 0 & 3 \end{array} \right]

• Eliminate the column 2 entry in row 3.

Combine -5 times row 2 and 7 times row 3 :

-5 (0, 7, 5, 2, 3, 0) + 7 (0, 5, 4, 1, 0, 3)

= (0, -35, -25, -10, -15, 0) + (0, 35, 28, 7, 0, 21)

= (0, 0, 3, -3, -15, 21)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 3 & -3 & -15 & 21 \end{array} \right]

• Multiply row 3 by 1/3 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 3 entry in row 2.

Combine row 2 and -5 times row 3 :

(0, 7, 5, 2, 3, 0) - 5 (0, 0, 1, -1, -5, 7)

= (0, 7, 5, 2, 3, 0) + (0, 0, -5, 5, 25, -35)

= (0, 7, 0, 7, 28, -35)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 0 & 7 & 28 & -35 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 2 by 1/7 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 2 and 3 entries in row 1.

Combine row 1, -2 times row 2, and -1 times row 3 :

(-3, 2, 1, 1, 0, 0) - 2 (0, 1, 0, 1, 4, -5) - (0, 0, 1, -1, -5, 7)

= (-3, 2, 1, 1, 0, 0) + (0, -2, 0, -2, -8, 10) + (0, 0, -1, 1, 5, -7)

= (-3, 0, 0, 0, -3, 3)

\left[ \begin{array}{ccc|ccc} -3 & 0 & 0 & 0 & -3 & 3 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 1 by -1/3 :

\left[ \begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

So, the inverse of our matrix is

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}^{-1} = \begin{bmatrix}0&1&-1\\1&4&-5\\-1&-5&7\end{bmatrix}

6 0
2 years ago
PL help please please help I'm crying
Marta_Voda [28]

Answer:

Step-by-step explanation:

Option A is the correct answer

Because the further process is correct

3 0
3 years ago
Other questions:
  • P(A)=0.22 and P(B)=0.46 <br> Find P(A OR B)
    13·1 answer
  • -2(x+1/4) +1=5<br><br> Solve for x
    6·1 answer
  • Read the proof. Given: m∠H = 30°, m∠J = 50°, m∠P = 50°, m∠N = 100° Prove: △HKJ ~ △LNP Statement Reason 1. m∠H = 30°, m∠J = 50°,
    9·1 answer
  • Logan genetically engineered a new type of fir tree and a new type of pine tree. The combined height of one fir tree and one pin
    9·1 answer
  • The value of 4 in 312.645 and the value of the 4 in 9.48
    5·1 answer
  • I’m not sure Wht to do?
    9·1 answer
  • The gradient of the curve is given by the equation and a point on the curve is also given. Find the equation of the curve with w
    8·1 answer
  • Please I really need the help:(
    13·1 answer
  • Maryanne is making a bracelet at camp using
    5·1 answer
  • Round to the nearest 100<br><br> 438.7
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!