Answer:
Two rounds
Explanation:
Meiosis is characterized by one round of DNA replication followed by two rounds of cell division, resulting in haploid germ cells. Crossing-over of DNA results in genetic exchange of genes between maternal and paternal DNA.
Answer:
Nope!
Explanation:
Receptors in muscles provide the brain with information about body position and movement. The brain controls the contraction of skeletal muscle. The nervous system regulates the speed at which food moves through the digestive track.
Answer:
Each FADH2 yields about 1.5 ATP via oxidative phosphorylation.
Explanation:
Most of the ATP molecules are produced by oxidative phosphorylation, not by substrate-level phosphorylation. During glycolysis, 2 ATP molecules per glucose are produced by substrate-level phosphorylation. Similarly, Kreb's cycle also yields 2 ATP per glucose by substrate-level phosphorylation.
For each pair of electrons transferred to O2 from FADH2 via electron transport chain, 4 and 2 protons are pumped from matrix towards the intermembrane space by complex III and complex IV respectively. It generates the proton concentration gradient required to drive the synthesis of 1.5 ATP molecules. Since oxidation of FADH2 is coupled to the phosphorylation of ADP to form ATP, the process is called oxidative phosphorylation.
Multicellular organisms can be much larger and more complex. This is because the cells of the organism have specialised into many different types of cells such as nerve cells, blood cells, muscle cells all performing different functions