Answer: 1.99 x 10²² molecules H2
Explanation:First we will solve for the moles of H2 using Ideal gas law PV= nRT then derive for moles ( n ).
At STP, pressure is equal to 1 atm and Temperature is 273 K.
Convert volume in mL to L:
750 mL x 1 L / 1000 mL
= 0.75 mL
n = PV/ RT
= 1 atm ( 0.75 L ) / 0.0821 L.atm/ mole.K ( 273 K)
= 3.3x10-² moles H2
Convert moles of H2 to atoms using Avogadro's Number.
3.3x10-² moles H2/ 6.022x10²³ atoms H2 / 1 mole H2
= 1.99x10²² atoms H2
The substance which is a combination of different atoms is a compound.
Answer:
see below
Explanation:
1. Predicting products (double replacement): ab + cd ---> ad + cb
KNO₃(aq) + Fe(OH)₃(s)
2. balance the equation
3KOH (aq) + Fe(NO3)₃ (aq) ---> 3KNO₃(aq) + Fe(OH)₃(s)
3. I don't know if you need this but ionic equation: only aqueous things get split into ions; gas, liquid, and solids stay together
3K⁺(aq) + 3(OH)⁻(aq) + Fe³⁺(aq) + 3NO₃⁻(aq) ---> 3K ⁺(aq) + 3NO₃⁻(aq) + Fe(OH)₃(s)
removing things on both product and reactant side
3(OH)⁻(aq) + Fe³⁺(aq) --->Fe(OH)₃(s)
Answer:
2-methylebutane
Explanation:
it is a hydrocarbon and there is a specific Rule for its nomenclature.
that is known as IUPAC naming system. According to it
- The compound that has all single bonds name ends on ane.
- Names according to the number of Carbons,
* For one carbon compound it is known as methane,
* For 2 ethane,
* For 3 propane
* For 4 Butane and so on.
- select the longest chain of compound
- Start numbering with lowest substituted position at carbon
- branch compound name as Iso and neo as whole
So keeping in mind the compound can be named as
2-methylebutane
- As the longest chain contain four carbon atoms so it will name as butane
- The substitution of methyl group is on C-2
*Note: it can also named as isopantane as it is branched and have five carbons but it could not be 3-isopentane.
The classification of it being a metal, nonmetal, or metalliod will be useful in the process of elimination to determine what it is. Then for the second test, meauring the atomin radius will narrow it down quicker to the mystery elemet's name.
Since you determined what part of the periodic table it's on, then when measuring the atomic radius, you should be able to pinpoint what the element is more surely.