Answer:
11.6g of NH₃(g) have to react
Explanation:
For the reaction:
4 NH₃(g) + 5 O₂(g) → 4 NO(g) + 6 H₂O(g) ΔH = -905kJ
<em>4 moles of ammonia produce 905kJ</em>
Thus, if you want to produce 154kJ of energy you need:
154kJ × (4 mol NH₃ / 905kJ) = <em>0.681moles of NH₃. </em>In mass -Molar mass ammonia is 17.031g/mol-
0.681mol NH₃ × (17.031g / mol) = <em>11.6g of NH₃(g) have to react</em>
Answer:
Round to the number of significant figures in the original question. However, if you're going to proceed with further calculations using this mass, it's best not to round, as rounding will cause your answer to be less precise.
Explanation:
Answer:
molar mass = 180.833 g/mol
Explanation:
- mass sln = mass solute + mass solvent
∴ solute: unknown molecular (nonelectrolyte)
∴ solvent: water
∴ mass solute = 17.5 g
∴ mass solvent = 100.0 g = 0.1 Kg
⇒ mass sln = 117.5 g
freezing point:
∴ ΔTc = -1.8 °C
∴ Kc H2O = 1.86 °C.Kg/mol
∴ m: molality (mol solute/Kg solvent)
⇒ m = ( - 1.8 °C)/( - 1.86 °C.Kg/mol)
⇒ m = 0.9677 mol solute/Kg solvent
- molar mass (Mw) [=] g/mol
∴ mol solute = ( m )×(Kg solvent)
⇒ mol solute = ( 0.9677 mol/Kg) × ( 0.100 Kg H2O )
⇒ mol solute = 0.09677 mol
⇒ Mw solute = ( 17.5 g ) / ( 0.09677 mol )
⇒ Mw solute = 180.833 g/mol
Answer:
2,3–dimethylpentane
Explanation:
To know which option is correct, we shall determine the name of the compound.
To obtain the name of the compound, do the following:
1. Determine the longest continuous carbon chain. This gives the parent name of the compound.
2. Identify the substituent group attached to the compound.
3. Locate the position of the substituent group by giving it the lowest possible count.
4. Combine the above to obtain the name of the compound.
Now, we shall determine the name of the compound as follow:
1. The longest continuous carbon chain is 5. Thus, the parent name of the compound is pentane.
2. The substituent group attached is methyl (–CH₃)
3. There are two methyl group attached to the compound. One is located at carbon 2 and the other at carbon 3.
4. Therefore, the name of the compound is:
2,3–dimethylpentane
None of the options are correct.
Answer:
T₂ = 392 K
Explanation:
Given that,
Initial volume of the hot air balloon, V₁ = 55500 m³
Initial temperature, T₁ = 21°C = 294 K
Final volume, V₂ = 74000 m³
We need to find the final temperature inside the balloon. The relation between the temperature and volume is given by charles law i.e.

Where
T₂ is the final temperature
So,

So, the new temperature is 392 K.