Theory of Continental Drift
If you take a look at a map of the earth today, you will see the current locations of broken land masses that constitute the earth. However, would you believe if someone told you that these broken land masses were once connected to each other as one huge supercontinent? Well, this claim was made in the 90’s by Alfred Wegener, a German polar researcher, meteorologist and geophysicist who died in 1930.
Wegener’s theory of continental drift states that the existing continents of the earth were once glued together forming a super landmass. Over time, the landmass broke and drifted away and is still drifting to this day. In his proposal, he stated that the super content, which he named Pangaea, meaning ‘’all earth” once existed. The supercontinent was surrounded by water bodies, mainly oceans, and seas.
SAYS EARTHECLIPS
Animal overpopulation is when the ecosystem is unable to support or handle the area of animals. It means that there are too many animals to handle the area in one place. Some animals eat the same food, and the food in the area can go lower and lower until no animals can eat anymore. Then more animals come to the area to eat, but no food is available for them to eat. They can lead to difficult and hard lives with the amount of resources.
Answer:
The albedo temperature for Mars and Venus are 210K and 184 K respectively.Mars albedo temperature is closer to its black body temperature such that the Venus has more albedo.Thus there is a chance that Mars would have had life in their history.
Explanation:
The albedo temperature is given as
![Te =\left [\dfrac{L(1-a)}{ (16\pi \sigma D^2}\right]^{1/4}](https://tex.z-dn.net/?f=Te%20%3D%5Cleft%20%5B%5Cdfrac%7BL%281-a%29%7D%7B%20%2816%5Cpi%20%5Csigma%20D%5E2%7D%5Cright%5D%5E%7B1%2F4%7D)
Here
L = Solar luminosity = 3.846*1026 W m-2 K-4
D = distance from Sun
σ = the Stefan-Boltzman constant = 5.6704 * 10-8 W
a is the albedo constant whose value for Mars is 0.250 while for Venus it is 0.900
So the albedo temperature is given as
Venus: 184 K
Mars: 210 K
The black body temperature is given as
![Te =\left [\dfrac{L}{ (16\pi \sigma D^2}\right]^{1/4}](https://tex.z-dn.net/?f=Te%20%3D%5Cleft%20%5B%5Cdfrac%7BL%7D%7B%20%2816%5Cpi%20%5Csigma%20D%5E2%7D%5Cright%5D%5E%7B1%2F4%7D)
By substitution of the values, the black body temperature for Venus and Mars are as
Venus: 327 K
Mars: 225 K
Mars albedo temperature is closer to its black body temperature such that the Venus has more albedo.
Thus there is a chance that Mars would have had life in their history.
Transit efficiency, energy usage, and average income
Answer:
Africa's physical geography, environment and resources, and human geography can be considered separately. Africa has eight major physical regions: the Sahara, the Sahel, the Ethiopian Highlands, the savanna, the Swahili Coast, the rain forest, the African Great Lakes, and Southern Africa
Explanation: