Answer:
The inverse for log₂(x) + 2 is - log₂x + 2.
Step-by-step explanation:
Given that
f(x) = log₂(x) + 2
Now to find the inverse of any function we put we replace x by 1/x.
f(x) = log₂(x) + 2
f(1/x) =g(x)= log₂(1/x) + 2
As we know that
log₂(a/b) = log₂a - log₂b
g(x) = log₂1 - log₂x + 2
We know that log₂1 = 0
g(x) = 0 - log₂x + 2
g(x) = - log₂x + 2
So the inverse for log₂(x) + 2 is - log₂x + 2.
Answer:
Vertex form: f(x) = -10(x − 2)^2 + 3
Standard form: y = -10x^2 + 40x - 37
Step-by-step explanation:
h and k are the vertex coordinates
Substitute them in the vertex form equation:
f(x) = a(x − 2)^2 + 3
Calculate "a" by replacing "f(x)" with -7 and "x" with 1:
-7 = a(1 − 2)^2 + 3
Simplify:
-7 = a(1 − 2)^2 + 3
-7 = a(-1)^2 + 3
-7 = a + 3
-10 = a
Replace a to get the final vertex form equation:
f(x) = -10(x − 2)^2 + 3
Convert to standard form:
y = -10(x − 2)^2 + 3
Expand using binomial theorem:
y = -10(x^2 − 4x + 4) + 3
Simplify:
y = -10x^2 + 40x - 40 + 3
y = -10x^2 + 40x - 37
Answer: $18.90
Step-by-step explanation:
Answer:
15y^2 - 21y
Step-by-step explanation:
A = LW
A = (5y - 7)(3y)
A = 15y^2 - 21y
Answers:
A) 51.3%
B) 55.9%
C) 32.8%
D) 48.8%
Step-by-step explanation: