Answer:
3 grams
Step-by-step explanation:
We are going to take the mass of a bunch of little strips below the triangle "roof." To do this, we must figure out what formula for the mass we'll use, in this case, we'll use:
Mass of strip = denisty * area = (1+x)*y*deltax grams
now, because the "roof" of the triangle contains two different integrals (it completely changes direction), we will use TWO integrals!
**pretend ∈ is the sum symbol
Mass of left part = lim x->0 ∈ (1+x)*y*deltax = inegral -1 to 0 of (1+x)*3*(x+1) = 3 * integral -1 to 0 of (x^2 + 2x + 1) = 3 * 1/3 = 1
Mass of left part = lim x->0 ∈ (1+x)*y*deltax = inegral 0 to 1 of (1+x)*3*(-x+1) = 3 * integral 0 to 1 of (-x^2 + 1) = 3 * 2/3 = 2
Total mass = mass left + mass right = 1 + 2 = 3 grams
Answer:
Line
intersects line 
Step-by-step explanation:
We are given that


Subtract one equation from other then we get



Substitute the value of x in first equation then we get

Hence, the solution
is the intersection point of two line equations .
Answer:Line
intersects line 
Answer:
1)Area; A = ¼πr²
Perimeter; P = πr/2 + 2r
2)A = 19.63 cm²
P = 17.85 cm
3) r = 8.885 cm
4) r = 14 cm
Step-by-step explanation:
This is a quadrant of a circle. Thus;
Area of a circle is πr². A quadrant is a quarter of a circle. Thus;
Formula for Quadrant Area is; A = ¼πr²
A) Perimeter of a circle is 2πr. Thus, perimeter of a quadrant is a quarter of the full circle perimeter.
Formula for the quadrant perimeter in the image given is;
P = 2πr/4 + 2r
P = πr/2 + 2r
B) When r is 5 cm;
A = ¼π(5)²
A = 19.63 cm²
P = π(5)/2 + 2(5)
P = 17.85 cm
C) when A is 100cm²:
¼πr² = 100
r² = 100 × 4/π
r² = 78.9358
r = √78.9358
r = 8.885 cm
D) when P = 50 cm.
50 = πr/2 + 2r
50 = (½π + 2)r
r = 50/(½π + 2)
r = 14 cm
P (A and B) = P(A) * P(B)...answer is D