There are four bases found in DNA: adenine (A), cytosine (C), guanine (G), and thymine (T). Adenine forms a base pair with thymine, and cytosine forms a base pair with guanine. There is a one-to-one relationship in these base pairings (Chargaff’s rule), which means that if you know the percentage of any one of them within a given DNA sample, you can calculate the percentages of the other three. In this case, you're given the percentage of guanine, and you want to find out the percentage of adenine.
Since guanine base-pairs with cytosine and since there must be as much cytosine as there is guanine, 41% of the bases in this gene are cytosine as well. That means that adenine and thymine <em>together </em>make up the remaining 18% (100% − 41% G − 41% C) of the base pairs. If there must be an equivalence in the number of thymine and adenine bases per Chargaff's rule, then half of the remaining base pairs must comprise adenine and the other half comprise thymine. Half of 18% is 9%.
Thus, adenine makes up 9% of the bases in this gene.
Savannah is the largest Bassin
Answer:
Molecules naturally disperse from areas of higher concentration to lower concentration.
As oxygen-rich (and carbon dioxide-poor) blood travels by a cell the oxygen diffuses through the cell membrane to the area of lower concentration inside the cell. It can do this easily because the oxygen molecule (O2) is very small and has no charge or polarity. The oxygen is used up rapidly by mitochondria. This rapid consumption causes oxygen to constantly move into the cell from the blood.
The mitochondria creates carbon dioxide (CO2) as a waste product of cellular respiration (the process that makes energy for your body). Because the CO2 is of a higher concentration in the cell than in the blood passing by, this gas continually diffuses out of the cell. It too is small and uncharged so it can pass through cell membranes easily.
These movements require no energy (in the form of ATP) on behalf of the cell.
Explanation:
Compersion of soil and air.
Hello! The answer is D
Primary succession is an event that occurs when an ecosystem is devoid of all organisms and a slow growth of the ecosystem is observed until it reaches a climax population. The most common example of a primary succession is the land development after a volcano eruption.
In graph D a slow increase in the number of individuals is observed until the graph reaches a maximum, that is called the climax population. This is why this graph shows an ecosystem that has undergone a primary succession during the observation period.