Number 3 is 5
And 4 is 100.8
There are two ways to do this
Method 1:
Find (f-g)(x) first
(f-g)(x) = f(x) - g(x)
(f-g)(x) = (5x^2+3) - (-2x+4)
(f-g)(x) = 5x^2+3+2x-4
(f-g)(x) = 5x^2+2x-1
Then plug in x = -3
(f-g)(-3) = 5(-3)^2+2(-3)-1
(f-g)(-3) = 5(9)+2(-3)-1
(f-g)(-3) = 45-6-1
(f-g)(-3) = 39-1
(f-g)(-3) = 38
-----------------------------------------
Method 2:
Find f(-3)
f(x) = 5x^2+3
f(-3) = 5(-3)^2+3
f(-3) = 5(9)+3
f(-3) = 45+3
f(-3) = 48
Find g(-3)
g(x) = -2x+4
g(-3) = -2(-3)+4
g(-3) = 6+4
g(-3) = 10
Subtract the two results
(f-g)(-3) = f(-3) - g(-3)
(f-g)(-3) = 48 - 10
(f-g)(-3) = 38
-----------------------------------------
Whichever method you pick, the answer is: 38
Answer:
60%
Step-by-step explanation:
You can solve this problem by setting up a system of equations.
Let's say that the number of tickets bought by students in the first year is x, and the number bought by continuing students is y. From there, you can set it up like this:
0.4x+0.2y=160
x+y=500
Now, you can multiply the first equation by 5 on both sides to get:
2x+y=800
Subtracting the second equation from the first equation now yields:
x=300
y=200
Since 300 of the 500 tickets bought were from the first year students, and 300/500 is 0.6, 60% of the students who bought the ticket were first year students. Hope this helps!
Answer:
x = 15
Step-by-step explanation:
Substitute: -4/5x + 7 = -5
Rearrange unknown terms to the left side of the equation: -4/5x = -5 - 7
Calculate the sum or difference: -4/5x = -12
Divide both sides of the equation by the coefficient of variable: x = -12 × (-5/4)
Remove the parentheses: x = 12 × 5/4
Cross out the common factor: x = 3 × 5
Calculate the product or quotient: x = 15
So the answer is: x = 15