1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodomira [7]
3 years ago
9

If 3x-2+4x=5, then x=?

Mathematics
1 answer:
jek_recluse [69]3 years ago
3 0
The answer would be x =1
You might be interested in
Giving brainliest!!!!!!!!!!
son4ous [18]
It’s A i did the test myself..
5 0
3 years ago
H varies directly as L. If H=20 when L=50, determine H when L=30
vichka [17]

The correct answer is 12

Set up a ratio and then solve. See paper attached. (:

4 0
3 years ago
How many feet is in 215 yards
Lilit [14]
645 feet.

Explanation:
We know that are 3 feet in a yard, so let's set up a proportion to solve this

x215
3 feet n
-------- = -----------
1 yard 215 yards
x 215

We are solving for n. To get from 1 to 215, we multiply by 215. So to get from 3 to the answer, we must multiply by 215 as well. 3 x 215 = 645, therefore that is the answer.
6 0
3 years ago
Read 2 more answers
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
3. If a ladder is x feet long, how high up a wall can it safely reach?
sineoko [7]

Answer:

xsin∅

Step-by-step explanation:

If the ladder is <em>x foot long</em>, and it can safely make a <em>maximum angle ∅</em>  with the floor, then, the maximum height it can reach will be xsin∅

6 0
3 years ago
Other questions:
  • Is 0.9 greater than 0.81?
    13·2 answers
  • Please answer the question from the attachment.
    12·1 answer
  • Select the correct answer.
    15·1 answer
  • can someone please solve this question? enter the ordered pair that is the solution to the system of equations
    8·1 answer
  • Need help thanksssss
    6·1 answer
  • Ayundenme
    5·1 answer
  • Which of the following is not a function?
    15·1 answer
  • Which of the following may have an outcome that is not a polynomial ? A. The addition of two polynomials B. The multiplication o
    7·1 answer
  • Does the following statement refer to a growth or fixed mindset? "If I have to try, I must not be smart."
    13·1 answer
  • Which is the correct label of the parallel lines?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!