1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allushta [10]
4 years ago
10

On a math​ test, Ana writes 9 as the solution to

e="\sqrt[3]{27}" alt="\sqrt[3]{27}" align="absmiddle" class="latex-formula"> .
a. Find the correct solution.
b. What error did Ana likely make on the​ test?
Mathematics
2 answers:
tester [92]4 years ago
8 0
A. The correct solution is 3
b. Ana likely divided 27 by the index 3.
GarryVolchara [31]4 years ago
5 0
3 root 3 is the right answer
Anna probably divided 27 with 3 which resulted in 9
Hope this helps :)
You might be interested in
Solve the proportion for “m”. 4/12=m/39
Sav [38]
Multiply both sides by 39 to get 13=M
3 0
3 years ago
Read 2 more answers
Find the area of the shaded regions. Give your answer as a completely simplified exact value in terms of π (no approximations).
Lapatulllka [165]
Hello!

The formula for the area of a sector can be written as follows:

Area = \frac{1}{2}r^{2}(R)

In the above formula, “r” represents the radius while “R” represents the radian measure of a sector. The radius is given to us in the image above as 10 inches. However, we still need the radian measure of the two sectors. To find this measure, we can use the following conversion:

1 degree = \frac{pi}{180} radians

Because the two sectors have a given measure of 72 degrees, we need to multiply both sides of the above conversion by 72:

72 degrees = \frac{72pi}{180}

Reduce the fraction on the right side of the equation:

72 degrees = \frac{2pi}{5}

We now have the radian measure of both sectors. Now simply insert this and any other known values into the “area of a sector” formula above:

Area = \frac{1}{2}10^{2}(\frac{2pi}{5})

Simplify the right side of the equation to get the following answer:

Area = 20 pi

We have now proven that the area of one sector is equal to 20 pi.

If, however, you need the combined area of the two identical sectors, simply multiply the proven area by 2 to get a total area of 40 pi.

I hope this helps!


3 0
3 years ago
Evaluate 1+(-2/3)-(-m)where m = 9/2
slava [35]

Answer:

29/6

Step-by-step explanation:

The expression that we have to evaluate in this problem is

1+(-\frac{2}{3}) -(-m)

for m=\frac{9}{2}.

First of all, we re-arrange the expression. We know that:

- The product of a positive number (+) and a negative number (-) is negative (-)

- The product of a negative number (-) and a negative number (-) is positive (+)

So we can rewrite the expression as

1-\frac{2}{3}+m

Also, we can combine the two numerical terms:

1-\frac{2}{3}=\frac{3}{3}-\frac{2}{3}=\frac{1}{3}

Therefore the expression becomes

\frac{1}{3}+m

Now we can substitute m=\frac{9}{2}, and we find:

\frac{1}{3}+\frac{9}{2}=\\\frac{2}{6}+\frac{27}{6}=\\\frac{2+27}{6}=\frac{29}{6}

8 0
4 years ago
Show me how to solve please. thanks (-:
Alex73 [517]
M<1+ m<2 = 90
-2x + 54 + 8x + 18 = 90
6x + 72 = 90
6x = 90 - 72
6x = 18
  x = 3

7 0
3 years ago
Read 2 more answers
Please help! Tysm! Picture of figure is attached.
miss Akunina [59]

Step-by-step explanation:

Notice that KM = 0.5BC, KL = 0.5AC

and ML = 0.5AB. Therefore the perimeter of triangle KLM is half of the perimeter of triangle ABC. => 0.5 * 24cm = 12cm.

Each of the 3 purple triangles have perimeters which are 1/4 of the perimeter of triangle ABC. (Their vertices are midpoints of midpoints => 1/2 * 1/2)

Perimeter of 3 small purple triangles

= 3 * [24cm * (1/4)]

= 3 * 6cm = 18cm.

Hence Total perimeter of shaded parts

= 12cm + 18cm = 30cm.

8 0
3 years ago
Other questions:
  • Given f(x) and g(x) = f(x) + k, use the graph to determine the value of k.
    9·1 answer
  • Figure out the pattern, fill in<br> the blank square.<br> 64 8<br> 16 4<br> 2 2<br> 2<br> 8<br> 1
    7·2 answers
  • Can somebody help me please. It is a easy one
    5·2 answers
  • The table below shows two equations:
    8·1 answer
  • Solve the equation -3x+7x=-10
    11·1 answer
  • Ali runs 7 miles in 60 minutes. At the same rate, how many miles would he run in 24 minutes
    10·1 answer
  • Instructions: Find the value of the trigonometric ratio. Make sure to
    15·1 answer
  • Helppppp please on number 2
    8·1 answer
  • 4. Simplify the expression<br> -22f+8f-15+9
    11·2 answers
  • X = {1, 2, 4, 8, 16, 32}<br> Y = {}
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!