Answer:
−5x+27
Step-by-step explanation:
Answer: Provided.
Step-by-step explanation: We are given two lines 'h' and 'k' which are parallel to each other. Also, there is another line 'j' that is perpendicular to line 'h'.
We are to prove that line 'j' is perpendicular to line 'k'.
Let, m, n and p be the slopes of lines 'h', 'k' and 'j' respectively.
Now, since line 'h' and 'k' are parallel, so their slopes will be equal. i.e., m = n.
Also, lines 'h' and 'j' are perpendicular, so the product of their slopes is -1. i.e.,
m×p = -1.
Hence, we can write from the above two relations
n×p = -1.
Thus, the line 'j' is perpendicular to line 'k'.
Proved.
Surface area of the pyramid= 4*(area of the triangle) + area of the square
Area of the triangle = (1/2)*base*height=(1/2)*5*5= 25/2 in²
Area of the square = 5*5 =25 in²
Surface area of the pyramid = 4*(25/2) + 25=2*25 + 25=75 in²
Answer:
Yes
Step-by-step explanation:
There is definetly a whole number so thats correct
1. subtract 4 from 6 equals 2
2. turn that 4 to a 1 whole and leave what's alone
3. Look at what you did... 1 2/4
4. Take pride
Answer: The answer is (B).
Step-by-step explanation: We are given four options and we are to select which matrix can be multiplied to the left of a vector matrix to get a new vector matrix. The order of a vector matrix is either n × 1 or 1 × n.
For (A): The order of the matrix is 2 × 1. If we multiply this matrix by a vector matrix of order 1 × 2, then the resulting matrix will be of order 2 × 2, which is not a vector matrix.
For (B): The order of the matrix is 3 × 2. If we multiply this matrix by a vector matrix of order 2 × 1, then the resulting matrix will be of order 3 × 1, which is a new vector matrix.
For (C): The order of the matrix is 2 × 2. If we multiply this matrix by a vector matrix of order 2 × 1, then the resulting matrix will be of order 2 × 1, which is a vector matrix of order same as before.
For (D): The order of the matrix is 1 × 2. If we multiply this matrix by a vector matrix of order 2 × 1, then the resulting matrix will be of order 1 × 1, which is a not vector matrix.
Thus, the correct option is (B).