Answer:
21
Step-by-step explanation:
Step 1:
0.6x - 0.1 = 0.5x + 2 Equation
Step 2:
0.1x - 0.1 = 2 Subtract 0.5x on both sides
Step 3:
0.1x = 2.1 Add 0.1 on both sides
Step 4:
x = 2.1 ÷ 0.1 Divide
Ansewr:
x = 21
Hope This Helps :)
Ford Family consists of:
a) 2 adults
The price of ticket for each adult is $18.55. This can be approximated to $19 if we round it to nearest dollar. So the price of ticket for 2 adults will be 2 x 19 = $38
b) 3 children between ages 2 and 10.
Ticket for each child between ages 2 - 10 is $12.59 which can be approximated to $13. So ticket price for 3 children will be 3 x 13 = $39
c) 2 children below the age of 2.
Ticket price for each child is $6.54 which can approximated as $7. So ticket price for 2 children will be 2 x 7 = $14
The estimated total amount due on the family equals = 38 + 39 + 14 = $91
In each of the 3 cases we rounded up the values. So this means the actual amount must be slightly lesser than $91. The actual bill was $87.95 which is close to $91 and lesser than it. Hence we can conclude that $87.95 is the correct amount due for Ford Family.
Amount borrowed, P = 13000
Interest, i = 0.07/12 per month
number of periods (months), n = 4*12 = 48
Monthly payment,


=
311.30 (to the nearest cent)
![y=x^5-3\\ y'=5x^4\\\\ 5x^4=0\\ x=0\\ 0\in [-2,1]\\\\ y''=20x^3\\\\ y''(0)=20\cdot0^3=0](https://tex.z-dn.net/?f=y%3Dx%5E5-3%5C%5C%20y%27%3D5x%5E4%5C%5C%5C%5C%205x%5E4%3D0%5C%5C%20x%3D0%5C%5C%200%5Cin%20%5B-2%2C1%5D%5C%5C%5C%5C%20y%27%27%3D20x%5E3%5C%5C%5C%5C%0Ay%27%27%280%29%3D20%5Ccdot0%5E3%3D0)
The value of the second derivative for

is neither positive nor negative, so you can't tell whether this point is a minimum or a maximum. You need to check the values of the first derivative around the point.
But the value of

is always positive for

. That means at

there's neither minimum nor maximum.
The maximum must be then at either of the endpoints of the interval
![[-2,1]](https://tex.z-dn.net/?f=%5B-2%2C1%5D)
.
The function

is increasing in its entire domain, so the maximum value is at the right endpoint of the interval.