1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
qwelly [4]
3 years ago
13

I need answers to all? Please help!

Mathematics
1 answer:
Ber [7]3 years ago
7 0

Answer:

do you still need help??

You might be interested in
Can someone help me with this
Kamila [148]

Step-by-step explanation:

please give me brainlest

7 0
3 years ago
Read 2 more answers
Luis has 4 baseball cards. Jonah has 5 times as many baseball cards as Luis. How many baseball cards does Jonah have?
Nesterboy [21]

Answer:

4 times 5 equals 20 so that's your answer

Step-by-step explanation:

:)Hope this helps!!

3 0
3 years ago
Read 2 more answers
Prove that: (b²-c²/a)CosA+(c²-a²/b)CosB+(a²-b²/c)CosC = 0​
IRISSAK [1]

<u>Prove that:</u>

\:\:\sf\:\:\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C=0

<u>Proof: </u>

We know that, by Law of Cosines,

  • \sf \cos A=\dfrac{b^2+c^2-a^2}{2bc}
  • \sf \cos B=\dfrac{c^2+a^2-b^2}{2ca}
  • \sf \cos C=\dfrac{a^2+b^2-c^2}{2ab}

<u>Taking</u><u> </u><u>LHS</u>

\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C

<em>Substituting</em> the value of <em>cos A, cos B and cos C,</em>

\longmapsto\left(\dfrac{b^2-c^2}{a}\right)\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+\left(\dfrac{c^2-a^2}{b}\right)\left(\dfrac{c^2+a^2-b^2}{2ca}\right)+\left(\dfrac{a^2-b^2}{c}\right)\left(\dfrac{a^2+b^2-c^2}{2ab}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2-a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2-b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2-c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2)-(b^2-c^2)(a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2)-(c^2-a^2)(b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2)-(a^2-b^2)(c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^4-c^4)-(a^2b^2-a^2c^2)}{2abc}\right)+\left(\dfrac{(c^4-a^4)-(b^2c^2-a^2b^2)}{2abc}\right)+\left(\dfrac{(a^4-b^4)-(a^2c^2-b^2c^2)}{2abc}\right)

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2}{2abc}+\dfrac{c^4-a^4-b^2c^2+a^2b^2}{2abc}+\dfrac{a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>On combining the fractions,</em>

\longmapsto\dfrac{(b^4-c^4-a^2b^2+a^2c^2)+(c^4-a^4-b^2c^2+a^2b^2)+(a^4-b^4-a^2c^2+b^2c^2)}{2abc}

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2+c^4-a^4-b^2c^2+a^2b^2+a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>Regrouping the terms,</em>

\longmapsto\dfrac{(a^4-a^4)+(b^4-b^4)+(c^4-c^4)+(a^2b^2-a^2b^2)+(b^2c^2-b^2c^2)+(a^2c^2-a^2c^2)}{2abc}

\longmapsto\dfrac{(0)+(0)+(0)+(0)+(0)+(0)}{2abc}

\longmapsto\dfrac{0}{2abc}

\longmapsto\bf 0=RHS

LHS = RHS proved.

7 0
3 years ago
To solve 2x + 9 = 21, what is the first step?
Oxana [17]
D.) Subtracting 9 from each side.
4 0
3 years ago
Find the exact value of the following. -3(1.2) ^2 =
weeeeeb [17]

Answer:

-4.32 would be the answer

i hope this helps you

5 0
3 years ago
Other questions:
  • Hey, I do not want the answer but could someone please explain to me on HOW to find the area of this figure? I forget how to :P
    12·1 answer
  • Anna bought 2 3/5 lb of grapes and Sanika bought 1/2 lb less than Anna. How many pounds of grapes did they buy in all?
    9·1 answer
  • Water is an example of a solvent true or false !<br> Hurry up and answer
    10·1 answer
  • A community college enrolled 96,000 students in 2007, and the enrollment has increased by 7% every year since then. Graph the ex
    15·1 answer
  • .25(1.2x3-1.25)+3.45
    8·1 answer
  • I got a tricky one
    6·1 answer
  • What is the value of −4(−0.3) divided by 1/2
    15·2 answers
  • I need to find out how many kilometers mikalea can run in 1 hour
    8·1 answer
  • I need this assignment done will give brainliest and extra points.
    10·1 answer
  • 21x + 7<br> 22x + 2<br> 180
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!