4 (0.5f - 0.25) = 6 + f
2.0f - 1.0 = 6.0 + f
1.00f = 6.0 + f
f = -5.0
hope this is right,
~ Harley Quinn~
Answer:
E
Step-by-step explanation:
Solution:-
- We are to investigate the confidence interval of 95% for the population mean of walking times from Fretwell Building to the college of education building.
- The survey team took a sample of size n = 24 students and obtained the following results:
Sample mean ( x^ ) = 12.3 mins
Sample standard deviation ( s ) = 3.2 mins
- The sample taken was random and independent. We can assume normality of the sample.
- First we compute the critical value for the statistics.
- The z-distribution is a function of two inputs as follows:
- Significance Level ( α / 2 ) = ( 1 - CI ) / 2 = 0.05/2 = 0.025
Compute: z-critical = z_0.025 = +/- 1.96
- The confidence interval for the population mean ( u ) of walking times is given below:
[ x^ - z-critical*s / √n , x^ + z-critical*s / √n ]
Answer: [ 12.3 - 1.96*3.2 / √24 , 12.3 + 1.96*3.2 / √24 ]
Answer:
Statements 3, 4 and 5 are true.
Step-by-step explanation:
x^2 - 8x + 4
Using the quadratic formula:
x = [ -(-8) +/- √((-8)^2 - 4*1*4)] / 2
= (8 +/- √(64 - 16)) / 2
= 4 +/- √48 / 2
= 4 +/- 4√3/2
= 4 +/- 2√3.
So the third statement is true.
Converting to vertex form:
x^2 - 8x + 4
= (x - 4)^2 - 16 + 4
= (x - 4)^2 -12
So the extreme value is at (4, -12)
So the fourth statement is true.
The coefficient of the term in x^2 is 1 (positive) so the graph has a minimum.
997/1000, or just round it to 1. <em>If I helped click thanks please (:</em>
Answer:
C
Step-by-step explanation:
5 + 6 + 4 = 15
Small - 5/15 = 1/3
Large - 4/15 = 4/15
The probability that he grabs a Large-sized shirt would be 4/15, which is around 26.7%. After that, he will grab a Small-sized shirt, which would have a probability of 33.33%. After combining the two, the only answer choice that could possibly make any sense is C. (using the process of elimination.)