Answer:
y- intercept --> Location on graph where input is zero
f(x) < 0 --> Intervals of the domain where the graph is below the x-axis
x- intercept --> Location on graph where output is zero
f(x) > 0 --> Intervals of the domain where the graph is above the x-axis
Step-by-step explanation:
Y-intercept: The y-intercept is equivalent to the point where x= 0. 'x' is the input variable in an equation, therefore the y-intercept is where the input, or x, is equal to 0.
f(x) <0: Notice the 'lesser than' sign. This means that the value of f(x), or 'y', is less than 0. This means that this area consists of intervals of the domain below the x-axis.
X-intercept: The x-intercept is the location of the graph where y= 0, or the output is equal to 0.
f(x) >0: In this, there is a 'greater than' sign. This means that f(x), or 'y', is greater than 0. Therefore, this consists of intervals of the domain above the x-axis.
Answer:
The cost of dinner alone was $37.145
Step-by-step explanation:
15%=0.15----Convert your percentage into a decimal
43.70*0.15=6.555----Multiply the cost of dinner with the decimal
$43.70-$6.555=$37.145----Subtract the last number(6.555) from the total(43.70) to get the cost of dinner alone of $37.145 -This is making you subtract the percentage from the total!
I hope this helped!
24 divided by 3 = 8
but thers two third so 8+8=16
shen has saved $16.00
Hope this helps!
Growth mindset because there is a new point/topic to look at everyday and even though it may challenge your mind, it feels better when you have learned it
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7