Answer:
<h2>y = 3x - 3</h2>
Step-by-step explanation:
The slope-intercept form of an equation of a line:

<em>m</em><em> - slope</em>
<em>b</em><em> - y-intercept</em>
<em />
We have the slope <em>m = 3</em>, and the point <em>(2, 3)</em>.
Put the value of slope and the coordinates of the given pint (x = 2, y = 3) to the equation of a line:

<em>subtract 3 from both sides</em>

Finally:

Yeah I think so you have to solve and break it down
Look up the link sis and the answer should be right there
Answer boom boom boom
Dy/dx = y/(x^2)
dy/y = dx/(x^2)
int[dy/y] = int[dx/(x^2)] ... apply integral to both sides
ln(|y|) = (-1/x) + C
|y| = e^{(-1/x) + C}
|y| = e^C*e^(-1/x)
|y| = C*e^(-1/x)
y = C*e^(-1/x)
So you have the correct answer. Nice job.
------------------------------------------------
Check:
y = C*e^(-1/x)
dy/dx = d/dx[C*e^(-1/x)]
dy/dx = d/dx[-1/x]*C*e^(-1/x)
dy/dx = (1/(x^2))*C*e^(-1/x)
is the expression for the left hand side (LHS)
y/(x^2) = [C*e^(-1/x)]/(x^2)
y/(x^2) = (1/(x^2))*C*e^(-1/x)
is the expression for the right hand side (RHS)
Since LHS = RHS, this confirms the solution for dy/dx = y/(x^2)