Answer:
Equation: 8=4b
b=2
Explanation:
The green line equals 8 and the black time equals 2b+2b. So to form an equation where the green line equals the black line it would look like: 8=2b+2b
8 being the green line
2b+2b being the black line
Then the directions tell us to combine like terms, like terms are terms that are the same such as 2b in this problem, and to combine them means to add them together.
So, 2b+2b= 4b
So the answer is, 8= 4b
In order to solve this equation divide both sides by 4.
Which leaves you with: 8/4= b
Now solve 8/4:
Which gives you:
b=2
Given:
'a' and 'b' are the intercepts made by a straight-line with the co-
ordinate axes.
3a = b and the line pass through the point (1, 3).
To find:
The equation of the line.
Solution:
The intercept form of a line is
...(i)
where, a is x-intercept and b is y-intercept.
We have, 3a=b.
...(ii)
The line pass through the point (1, 3). So, putting x=1 and y=3, we get



Multiply both sides by a.

The value of a is 2. So, x-intercept is 2.
Putting a=2 in
, we get


The value of b is 6. So, y-intercept is 6.
Putting a=2 and b=6 in (i), we get

Therefore, the equation of the required line in intercept form is
.
it equals to -2+10v since you have to distribute the -2 to the 1 and -5v
It'd look like this as an equation:
3h-8
Answer:
C-17 I think my bad
Step-by-step explanation: