1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sineoko [7]
3 years ago
6

SOLVE. integration of (1+v^2) /(1-v^3)

Mathematics
1 answer:
s2008m [1.1K]3 years ago
6 0
\displaystyle\int\frac{1+v^2}{1-v^3}\,\mathrm dv

1-v^3=(1-v)(1+v+v^2)
\implies\dfrac{1+v^2}{1-v^3}=\dfrac a{1-v}+\dfrac{b_0+b_1v}{1+v+v^2}
\implies\dfrac{1+v^2}{1-v^3}=\dfrac{a(1+v+v^2)+(b_0+b_1v)(1-v)}{1-v^3}
\implies 1+v^2=(a+b_0)+(a-b_0+b_1)v+(a-b_1)v^2
\implies\begin{cases}a+b_0=1\\a-b_0+b_1=0\\a-b_1=1\end{cases}\implies a=\dfrac23,b_0=\dfrac13,b_1=-\dfrac13

So,

\displaystyle\int\frac{1+v^2}{1-v^3}\,\mathrm dv=\dfrac23\int\frac{\mathrm dv}{1-v}+\dfrac13\int\frac{1-v}{1+v+v^2}\,\mathrm dv

The first integral is easy. For the second, since the derivative of the denominator is (1+v+v^2)=1+2v, we can add and subtract 3v to get

\dfrac{1-v}{1+v+v^2}=\dfrac{1+2v-3v}{1+v+v^2}=\dfrac{1+2v}{1+v+v^2}-\dfrac{3v}{1+v+v^2}

and for the first term employ a substitution. For the remaining term, we can complete the square in the denominator, then use a trigonometric substitution:

\displaystyle\int\frac{1+2v}{1+v+v^2}\,\mathrm dv=\int\frac{\mathrm dt}t

where t=1+v+v^2\implies\mathrm dt=(1+2v)\,\mathrm dv, and

\displaystyle\int\frac{3v}{1+v+v^2}\,\mathrm dv=3\int\frac v{\left(v+\frac12\right)^2+\frac34}\,\mathrm dv

Then taking v+\dfrac12=\dfrac{\sqrt3}2\tan s\implies \mathrm dv=\dfrac{\sqrt3}2\sec^2s\,\mathrm ds gives

\displaystyle3\int\frac v{\left(v+\frac12\right)^2+\frac34}\,\mathrm dv=3\int\frac{\frac{\sqrt3}2\tan s-\frac12}{\left(\frac{\sqrt3}2\tan s\right)^2+\frac34}\left(\frac{\sqrt3}2\sec^2s\right)\,\mathrm ds
=\displaystyle\sqrt3\int(\sqrt3\tan s-1)\,\mathrm ds
=\displaystyle3\int\tan s\,\mathrm ds-\sqrt3\int\mathrm ds

Now we're ready to wrap up.

\displaystyle\int\frac{1+v^2}{1-v^3}\,\mathrm dv=\dfrac23\int\frac{\mathrm dv}{1-v}+\dfrac13\int\frac{1-v}{1+v+v^2}\,\mathrm dv
=\displaystyle-\frac23\ln|1-v|+\frac13\left(\int\frac{1+2v}{1+v+v^2}\,\mathrm dv-\int\frac{3v}{1+v+v^2}\,\mathrm dv\right)
=\displaystyle-\frac23\ln|1-v|+\frac13\int\frac{\mathrm dt}t-\frac13\left(3\int\tan s\,\mathrm ds-\sqrt3\int\mathrm ds\right)
=\displaystyle-\frac23\ln|1-v|+\frac13\ln|t|-\int\tan s\,\mathrm ds+\frac1{\sqrt3}\int\mathrm ds
=\displaystyle-\frac23\ln|1-v|+\frac13\ln|1+v+v^2|+\ln|\cos s|+\frac s{\sqrt3}+C
=\displaystyle-\frac23\ln|1-v|+\frac13\ln|1+v+v^2|+\ln\left|\frac{\sqrt3}{2\sqrt{1+v+v^2}}\right|+\frac1{\sqrt3}\tan^{-1}\frac{2v+1}{\sqrt3}+C

This can be simplified a bit using some properties of logarithms to obtain

=\displaystyle-\frac23\ln|1-v|+\frac13\ln(1+v+v^2)+\left(\ln\frac{\sqrt3}2-\frac12\ln(1+v+v^2)\right)+\frac1{\sqrt3}\tan^{-1}\frac{2v+1}{\sqrt3}+C
=\displaystyle-\frac23\ln|1-v|-\frac16\ln(1+v+v^2)+\frac1{\sqrt3}\tan^{-1}\frac{2v+1}{\sqrt3}+C
You might be interested in
-45b+5=67 what is the variable b​
lisabon 2012 [21]

Answer:

\large\boxed{b=-\dfrac{62}{45}}

Step-by-step explanation:

-45b+5=67\qquad\text{subtract 5 from both sides}\\\\-45b+5-5=67-5\\\\-45b=62\qquad\text{divide both sides by (-45)}\\\\\dfrac{-45b}{-45}=\dfrac{62}{-45}\\\\b=-\dfrac{62}{45}

3 0
3 years ago
What is the union of two rays that share a vertex? (3rd question)
Nadya [2.5K]
Two rays that have a common endpoint form an angle.<span> In this formed angle, the endpoint is known as the vertex while the rays are its sides.

So 2 rays that share a vertex is called an angle</span>
5 0
4 years ago
42×10 minutes in shower
ludmilkaskok [199]
42 times 10 is 420. hope this helps
6 0
3 years ago
Read 2 more answers
What is 1(4X9)<br> What is the answer
valina [46]
Solve:

Do the parenthesis first, so 4*9=36

Now multiply it by 1.

1*36=36

Final answer: 36

6 0
3 years ago
Read 2 more answers
A Venn Diagram consists of two circles, A and B. The two circles form three regions, one region is the overlap of the two circle
slava [35]
The answer to your question is B.
5 0
3 years ago
Read 2 more answers
Other questions:
  • HURRY DESPERATELY AWAITING HELP Rebecca babysits for 12.5 hours last week if she makes $11 an hour how much money will she make?
    8·1 answer
  • For ΔABC, the measure in degrees of angles A, B, and C are 60, 55, and x + 20 respectively. What is the value of x?
    10·1 answer
  • What is the solution of square root of-4x=100? x = –2500 x = –50 x = –2.5 no solution
    12·1 answer
  • Subtract 2w + 4 ​​from​ 3w + 6.
    8·2 answers
  • Help Me PLEASE!!! Simplify The Equation (2nd question)
    9·1 answer
  • The graph of an arithmetic sequence is shown.
    7·2 answers
  • a company pays $379.50 for its employees to attend a luncheon. if the cost is $8.25 per person, how many employees does the comp
    13·1 answer
  • How can you change the concentration of a solution?
    13·1 answer
  • Which answer is correct?
    5·1 answer
  • Ian rode his scooter 1/3 of a hour and travels 2 1/6 miles. How many miles did he travel in a hour.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!