1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sineoko [7]
3 years ago
6

SOLVE. integration of (1+v^2) /(1-v^3)

Mathematics
1 answer:
s2008m [1.1K]3 years ago
6 0
\displaystyle\int\frac{1+v^2}{1-v^3}\,\mathrm dv

1-v^3=(1-v)(1+v+v^2)
\implies\dfrac{1+v^2}{1-v^3}=\dfrac a{1-v}+\dfrac{b_0+b_1v}{1+v+v^2}
\implies\dfrac{1+v^2}{1-v^3}=\dfrac{a(1+v+v^2)+(b_0+b_1v)(1-v)}{1-v^3}
\implies 1+v^2=(a+b_0)+(a-b_0+b_1)v+(a-b_1)v^2
\implies\begin{cases}a+b_0=1\\a-b_0+b_1=0\\a-b_1=1\end{cases}\implies a=\dfrac23,b_0=\dfrac13,b_1=-\dfrac13

So,

\displaystyle\int\frac{1+v^2}{1-v^3}\,\mathrm dv=\dfrac23\int\frac{\mathrm dv}{1-v}+\dfrac13\int\frac{1-v}{1+v+v^2}\,\mathrm dv

The first integral is easy. For the second, since the derivative of the denominator is (1+v+v^2)=1+2v, we can add and subtract 3v to get

\dfrac{1-v}{1+v+v^2}=\dfrac{1+2v-3v}{1+v+v^2}=\dfrac{1+2v}{1+v+v^2}-\dfrac{3v}{1+v+v^2}

and for the first term employ a substitution. For the remaining term, we can complete the square in the denominator, then use a trigonometric substitution:

\displaystyle\int\frac{1+2v}{1+v+v^2}\,\mathrm dv=\int\frac{\mathrm dt}t

where t=1+v+v^2\implies\mathrm dt=(1+2v)\,\mathrm dv, and

\displaystyle\int\frac{3v}{1+v+v^2}\,\mathrm dv=3\int\frac v{\left(v+\frac12\right)^2+\frac34}\,\mathrm dv

Then taking v+\dfrac12=\dfrac{\sqrt3}2\tan s\implies \mathrm dv=\dfrac{\sqrt3}2\sec^2s\,\mathrm ds gives

\displaystyle3\int\frac v{\left(v+\frac12\right)^2+\frac34}\,\mathrm dv=3\int\frac{\frac{\sqrt3}2\tan s-\frac12}{\left(\frac{\sqrt3}2\tan s\right)^2+\frac34}\left(\frac{\sqrt3}2\sec^2s\right)\,\mathrm ds
=\displaystyle\sqrt3\int(\sqrt3\tan s-1)\,\mathrm ds
=\displaystyle3\int\tan s\,\mathrm ds-\sqrt3\int\mathrm ds

Now we're ready to wrap up.

\displaystyle\int\frac{1+v^2}{1-v^3}\,\mathrm dv=\dfrac23\int\frac{\mathrm dv}{1-v}+\dfrac13\int\frac{1-v}{1+v+v^2}\,\mathrm dv
=\displaystyle-\frac23\ln|1-v|+\frac13\left(\int\frac{1+2v}{1+v+v^2}\,\mathrm dv-\int\frac{3v}{1+v+v^2}\,\mathrm dv\right)
=\displaystyle-\frac23\ln|1-v|+\frac13\int\frac{\mathrm dt}t-\frac13\left(3\int\tan s\,\mathrm ds-\sqrt3\int\mathrm ds\right)
=\displaystyle-\frac23\ln|1-v|+\frac13\ln|t|-\int\tan s\,\mathrm ds+\frac1{\sqrt3}\int\mathrm ds
=\displaystyle-\frac23\ln|1-v|+\frac13\ln|1+v+v^2|+\ln|\cos s|+\frac s{\sqrt3}+C
=\displaystyle-\frac23\ln|1-v|+\frac13\ln|1+v+v^2|+\ln\left|\frac{\sqrt3}{2\sqrt{1+v+v^2}}\right|+\frac1{\sqrt3}\tan^{-1}\frac{2v+1}{\sqrt3}+C

This can be simplified a bit using some properties of logarithms to obtain

=\displaystyle-\frac23\ln|1-v|+\frac13\ln(1+v+v^2)+\left(\ln\frac{\sqrt3}2-\frac12\ln(1+v+v^2)\right)+\frac1{\sqrt3}\tan^{-1}\frac{2v+1}{\sqrt3}+C
=\displaystyle-\frac23\ln|1-v|-\frac16\ln(1+v+v^2)+\frac1{\sqrt3}\tan^{-1}\frac{2v+1}{\sqrt3}+C
You might be interested in
Factor the expression below 36a2-25b2 which binomial is factor of the expression
Serhud [2]

Answer: (6a + 5b) • (6a - 5b)

 

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "b2"   was replaced by   "b^2".  1 more similar replacement(s).

Step by step solution :

Step  1  :

Equation at the end of step  1  :

 (36 • (a2)) -  52b2

Step  2  :

Equation at the end of step  2  :

 (22•32a2) -  52b2

Step  3  :

Trying to factor as a Difference of Squares :

3.1      Factoring:  36a2-25b2

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =

        A2 - AB + BA - B2 =

        A2 - AB + AB - B2 =

        A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check :  36  is the square of  6

Check : 25 is the square of 5

Check :  a2  is the square of  a1

Check :  b2  is the square of  b1

Factorization is :       (6a + 5b)  •  (6a - 5b)

Final result :

 (6a + 5b) • (6a - 5b)

brainly would epic!

7 0
3 years ago
Read 2 more answers
Someone please help me
Lerok [7]

Answer:

y=3x+5

Step-by-step explanation:

I think that this is what they mean...

y=mx+b

y=3x+b

y=3x+5

plug in #s

5=15+5

5=20 no

6 0
4 years ago
Find the slope of the line that passes through the points (1,-4) and (3,-1).
sveta [45]

Answer: E

Step-by-step explanation: I used m.athway

8 0
3 years ago
Which of the following tables shows a rate greater than 1 kilometer per hour
LenKa [72]

Answer:

it is C

Step-by-step explanation:

4 0
3 years ago
24x=3y solve for x and y
olga2289 [7]
\ 24x=3y \\ \\ \ x=3 \ ; \ y=24
4 0
4 years ago
Other questions:
  • What is 7/25 in decimal form
    14·1 answer
  • Use the change of base rule to find the logarithm to four decimal places
    13·1 answer
  • 2 less than three times a number is the same as the number plus 10
    6·1 answer
  • - 2/3x=6<br><br> Solve for X
    12·2 answers
  • Which polynomial is equivalent to (2h − 3k)(h + 5k)?
    10·2 answers
  • Lincoln wants the monthly payment for a $150,030 fixed mortgage to be $660 but his credit score is 650. What percent does Lincol
    13·1 answer
  • An ice cream cone has a radius of 3 inches and a height of 9 inches. What is the exact value of the volume of the ice cream cone
    8·2 answers
  • Alejandro went out to eat dinner, and the meal cost $70.00. If Alejandro received a 24% discount, what was the total value of th
    15·1 answer
  • Find the mean, median, mode, and range of the data set: 8, 6, 7, 5, 6, 2, 5, 9, 9, 4, 5 mean = ____ median = ______ mode = ____
    9·1 answer
  • Solve for x. -3+8x-5=-8 A. -2 B. -1 C. -3/4 D. 0
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!