let's notice something, we have a circle with a radius of 12 and one 90° sector is cut off, so only three 90° sectors of the circle are left shaded, so namely the cone will be using 3/4 of that circle.
think of it as, this shaded area is some piece of paper, and you need to pull it upwards and have the cutoff edges meet, and when that happens, you'll end up with a cone-shaped paper cup, and pour in some punch.
now, once we have pulled up the center of the circle to make our paper cup, there will be a circular base, its diameter not going to be 24, it'll be less, but whatever that base is, we know that is going to have the same circumference as those in the shaded area. Well, what is the circumference of that shaded area?
![\bf \textit{circumference of a circle}\\\\ C=2\pi r~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=12 \end{cases}\implies C=2\pi 12\implies C=24\pi \implies \stackrel{\textit{three quarters of it}}{24\pi \cdot \cfrac{3}{4}} \\\\\\ 6\pi \cdot 3\implies 18\pi](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bcircumference%20of%20a%20circle%7D%5C%5C%5C%5C%20C%3D2%5Cpi%20r~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D12%20%5Cend%7Bcases%7D%5Cimplies%20C%3D2%5Cpi%2012%5Cimplies%20C%3D24%5Cpi%20%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bthree%20quarters%20of%20it%7D%7D%7B24%5Cpi%20%5Ccdot%20%5Ccfrac%7B3%7D%7B4%7D%7D%20%5C%5C%5C%5C%5C%5C%206%5Cpi%20%5Ccdot%203%5Cimplies%2018%5Cpi)
well then, the circumference of that circle at the bottom will be 18π, so, what is the diameter of a circle with a circumferenc of 18π?
![\bf \textit{circumference of a circle}\\\\ C=2\pi r~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ C=18\pi \end{cases}\implies 18\pi =2\pi r\implies \cfrac{18\pi }{2\pi }=r\implies 9=r \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{\textit{diameter is twice the radius}}{d=18}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bcircumference%20of%20a%20circle%7D%5C%5C%5C%5C%20C%3D2%5Cpi%20r~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20C%3D18%5Cpi%20%5Cend%7Bcases%7D%5Cimplies%2018%5Cpi%20%3D2%5Cpi%20r%5Cimplies%20%5Ccfrac%7B18%5Cpi%20%7D%7B2%5Cpi%20%7D%3Dr%5Cimplies%209%3Dr%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bdiameter%20is%20twice%20the%20radius%7D%7D%7Bd%3D18%7D~%5Chfill)
1 minute = 60 seconds
300 seconds / 60 seconds = 5 minutes
Answer: Y=-1/4x
Step-by-step explanation:
A good way to find an equation of a line is to look for the slope. An obvious spot on this line would be when it crosses (0,0), and another one to the right would be when it crosses at (4,-1).
The slope is rise over run, or if we use the two points we found, "rise" would be -1, because it's dropping 1 unit when going from (0,0) to (4,-1), and the "run" would be 4, because it moves to the right 4 from (0,0) to (4,-1).
Putting these two values together we get:
m (slope) = rise / run
m = -1 / 4
Out of all the equations we're given, we can look for the one with a slope of -1/4, which is given to us:
y = (-1/4)x
Answer:
3.4 - 2.8d + 2.8d - 1.3 = 2.1
Step-by-step explanation:
The given expression is 3.4 -2.8d + 2.8d -1.3
Let's see the definition of like terms.
Like terms are the terms having the same variable and the same exponents.
Examples: -3xy, 2xy and 4y, 5y and -3, 2.
Now let's identify the like terms from the given expression.
3.4 -2.8d + 2.8d -1.3
Here the like terms are -2.8d, +2.8d and 3.4, -1.3
3.4 -2.8d + 2.8d -1.3
= -2.8d + 2.8d + 3.4 - 1.3 [-2.8d + 2.8d = 0] and 3.4 -1.3 = 2.1
= 0 + 2.1
=2.1
The answer is 2.1