Answer:
It effects it because there's a possibility it can reduce the mountains to a smaller structure (breaking down), like a plateau, which would for sure leave a change in the landforms
Explanation:
<em>~Cornasha_Weeb</em>
Answer:
B. They sold 120 student and 30 adult tickets.
Explanation:
120 x 12 = 1,440
30 x 20 = 600
1,440 + 600 = 2,040.
Large polymers are created during dehydration synthesis, which are typically referred to as biological macromolecules. These compounds include proteins, lipids, carbohydrates, and nucleic acids.
As a result, the dehydration reaction is responsible for the formation of protein, lipid, and nucleic acids.
1. Protein structure
- Amino acid polymers form proteins. There are four different types of proteins, based on structure.
- The amino acid sequence of a protein is represented by its primary structure, which is a linear chain.
- The backbone (main chain) atoms of a polypeptide are arranged locally in space to form the protein's secondary structure.
- A polypeptide chain's whole three-dimensional structure is referred to as a protein's tertiary structure.
- The protein's quaternary structure, which is a three-dimensional arrangement of the subunits of a multi-subunit protein.
2. Lipid structure is a crucial element of the cell membrane. The structure is mostly composed of a glycerol backbone, two hydrophobic fatty acid tails, and a hydrophilic phosphate group.
3. Nucleic acids' structure: Nucleotide polymers make up nucleic acids. Each nucleotide is made up of an aromatic base with a N-atom connected to a pentose sugar with five carbons, which is then joined to a phosphate group.
To know more about biological macromolecules visit:
brainly.com/question/2141678
#SPJ4
Answer:
This question lacks options, options are:
A.They maintain the cell’s shape.
B.They regulate cell processes.
C.They protect the body from infectious agents.
D.They signal the immune system to destroy pathogens.
E.They speed up biochemical reactions.
F.They send electrical signals.
The correct answers are C and D.
Explanation:
B cells and T cells use different biological weapons to attack the pathogen. The first secrete proteins called antibodies, which are distributed via the blood or the exposed surfaces to the environment, such as mucous. Antibodies are glycoproteins that circulate in the bloodstream looking for antigens that cause some type of damage to the body. Antibodies recognize and neutralize pathogens in a highly efficient way. Once the antibodies are produced, they remain circulating in the bloodstream for several months, which generates immunity for a long period of time to a certain antigen, in other words, they are capable of recognizing other molecules (antigens) in a very specific way and forming stable complexes with them (immune complexes). Its appearance in plasma is part of the adaptive immune response, in what is known as a specific humoral response, constituting a very effective defense against pathogens.
-carbohydrates contain carbon , hydrogen and oxygen
-also known as saccharides
-glucose is a hexose monosaccharide (composed of 6 carbons )
-two structural variations: alpha α and beta β glucose ,in which the OH group on carbon 1 is in opposite positions
- glucose : polar and soluble in water due to the bonds that form between the hydroxyl groups and water molecules
-glycosidic bond : bond formed between two glucose molecules by a condensation reaction forming a disaccharide
-fructose +galactose =sucrose
-galactose +glucose = lactose
- starch :many alpha glucose molecules can be joined by glycosidic bonds to form two slightly different polysaccharides
- one of the polysaccharides of starch is called amylose
- amylose : formed by alpha glucose molecules joined together only by 1-4 glycosidic bonds
-amylopectin: both 1-4 and 1-6 (every 25 glucose subunits )glycosidic bonds between alpha glucose molecules. 1-6 glycosidic bonds cause branching
-glycogen : more branches than amylopectin . Compact so ideal for storage . Speeds up the process of storing and releasing glucose molecules required in the cell.Insoluble
-hydrolysis reactions opposite of condensation reaction
-cellulose:beta glucose molecules. Join together by alternate beta glucose molecules turn upside down
- straight chain molecule: cellulose
-cellulose molecules make H bonds with each-other forming microfibrils. Microfibrils join together to form macrofibrils which combine to produce fibres