1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lord [1]
3 years ago
10

A two-liter cola costs $1.19 and 6 cans each containing 16 oz cost $1.59. Which is the better buy and by how much?

Mathematics
2 answers:
Lelu [443]3 years ago
6 0

Answer:

THe 16 Oz is cheaper by $0.036 per unit

Step-by-step explanation:

Given

A 2-litre cola;

Size = 2 litre

Total Cost = $1.19

6 cans;

Size = 16 Oz each

Size = 16 * 6 = 96 Oz.

Total Cost = $1.59

Required?

Which is a better buy.

By "being a better buy", we assume that it means cheaper.

To calculate the cheaper buy, first we need to convert the containers to the same unit.

We'll convert 96 Oz to litres

1 Oz = 0.0295735 litre

To get the size of 96 Oz, we can simply multiply both sides of the equation by 96. This gives

96 * 1 Oz = 96 * 0.0295735 litre

96 Oz = 2.839056

Then, we'll calculate the unit price;

Unit price is calculated by Total price / Size

For the 2-litre cola;

Size = 2 litre

Total Cost = $1.19

Unit Price = $1.19/2 litre

Unit Price = $0.596 per litre

6 cans;

Size = 16 Oz each

Size = 16 * 6 = 96 Oz = 2.839056 litre

Total Cost = $1.59

Unit Price = $1.59/2.839056 litre

Unit Price = $0.560 per litre

The unit cost of the 16oz is smaller than the 2 litre bottle, hence we conclude that the 16 Oz is cheaper.

And it is cheaper by ($0.596 - $0.560)

= $0.036

larisa [96]3 years ago
4 0
The 6 cans, containing 16 oz each is the better buy.
16x6= 96 oz
96 oz converted to liters, is 2.83906 liters.
So it's better to buy the cans by .83906
You might be interested in
HELP ME PLEASE! 20 POINTS!!!
Grace [21]

Answer:

is in the shape of a sphere

diameter = 60 feet

radius = r = 60/2 = 30 feet

Step-by-step explanation:

volume of sphere = 4/3 × π × r³

= 4/3 × π × 30³

=4/3π × 27,000

= 36000π cubic feet

7 0
2 years ago
Read 2 more answers
Find the midpoint from (-2,-2) to (6,6)
timama [110]
(2,2)


(x1+x2)/2, (y1-y2)/2
(-2+6)/2=(2)
(-2+6)/2=2
4 0
3 years ago
Read 2 more answers
Which of the following functions are homomorphisms?
Vikentia [17]
Part A:

Given f:Z \rightarrow Z, defined by f(x)=-x

f(x+y)=-(x+y)=-x-y \\  \\ f(x)+f(y)=-x+(-y)=-x-y

but

f(xy)=-xy \\  \\ f(x)\cdot f(y)=-x\cdot-y=xy

Since, f(xy) ≠ f(x)f(y)

Therefore, the function is not a homomorphism.



Part B:

Given f:Z_2 \rightarrow Z_2, defined by f(x)=-x

Note that in Z_2, -1 = 1 and f(0) = 0 and f(1) = -1 = 1, so we can also use the formular f(x)=x

f(x+y)=x+y \\  \\ f(x)+f(y)=x+y

and

f(xy)=xy \\  \\ f(x)\cdot f(y)=xy

Therefore, the function is a homomorphism.



Part C:

Given g:Q\rightarrow Q, defined by g(x)= \frac{1}{x^2+1}

g(x+y)= \frac{1}{(x+y)^2+1} = \frac{1}{x^2+2xy+y^2+1}  \\  \\ g(x)+g(y)= \frac{1}{x^2+1} + \frac{1}{y^2+1} = \frac{y^2+1+x^2+1}{(x^2+1)(y^2+1)} = \frac{x^2+y^2+2}{x^2y^2+x^2+y^2+1}

Since, f(x+y) ≠ f(x) + f(y), therefore, the function is not a homomorphism.



Part D:

Given h:R\rightarrow M(R), defined by h(a)=  \left(\begin{array}{cc}-a&0\\a&0\end{array}\right)

h(a+b)= \left(\begin{array}{cc}-(a+b)&0\\a+b&0\end{array}\right)= \left(\begin{array}{cc}-a-b&0\\a+b&0\end{array}\right) \\  \\ h(a)+h(b)= \left(\begin{array}{cc}-a&0\\a&0\end{array}\right)+ \left(\begin{array}{cc}-b&0\\b&0\end{array}\right)=\left(\begin{array}{cc}-a-b&0\\a+b&0\end{array}\right)

but

h(ab)= \left(\begin{array}{cc}-ab&0\\ab&0\end{array}\right) \\  \\ h(a)\cdot h(b)= \left(\begin{array}{cc}-a&0\\a&0\end{array}\right)\cdot \left(\begin{array}{cc}-b&0\\b&0\end{array}\right)= \left(\begin{array}{cc}ab&0\\-ab&0\end{array}\right)

Since, h(ab) ≠ h(a)h(b), therefore, the funtion is not a homomorphism.



Part E:

Given f:Z_{12}\rightarrow Z_4, defined by \left([x_{12}]\right)=[x_4], where [u_n] denotes the lass of the integer u in Z_n.

Then, for any [a_{12}],[b_{12}]\in Z_{12}, we have

f\left([a_{12}]+[b_{12}]\right)=f\left([a+b]_{12}\right) \\  \\ =[a+b]_4=[a]_4+[b]_4=f\left([a]_{12}\right)+f\left([b]_{12}\right)

and

f\left([a_{12}][b_{12}]\right)=f\left([ab]_{12}\right) \\ \\ =[ab]_4=[a]_4[b]_4=f\left([a]_{12}\right)f\left([b]_{12}\right)

Therefore, the function is a homomorphism.
7 0
3 years ago
Help help help plz plz plz
DaniilM [7]

Answer:

Yes

Step-by-step explanation:

What would you do if he said ok so he said yes would go?

I told him god bless him and to keep working in his vocabulary.

5 0
2 years ago
PLZ HELP SOON
marysya [2.9K]
12.5%. there is a 1 in 8 chance that all three times it will land on heads.
5 0
3 years ago
Read 2 more answers
Other questions:
  • In the diagram, what is the measure of ZWRS?
    9·2 answers
  • Please tell me the answer and how you got it
    7·1 answer
  • F(x) = (x + 5)(x + 6)
    6·1 answer
  • I need an answer soon, please! Whoever answers first will get Brainliest!!! Please no troll answers!
    9·2 answers
  • The sum of the first 666 terms of a geometric series is 15{,}62415,62415, comma, 624 and the common ratio is 555.
    5·1 answer
  • The leg of a right triangle is 2 units and the hypotenuse is 4 units. What is the length, in units, of the other leg of the tria
    12·1 answer
  • The area of the parallelogram below is ____ square meters. A parallelogram with height labeled with 8 meters. The top horizontal
    13·2 answers
  • PLEASE HELP
    6·1 answer
  • Y-3=5x solveeeeeeeeeeeeeeeeeeeeeeeeeeeee
    15·2 answers
  • The product of 7 and a number is greater than 42. If the number is a whole number less than 10 , what could the number be?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!