Explanation:
When the inequality symbol is replaced by an equal sign, the resulting linear equation is the boundary of the solution space of the inequality. Whether that boundary is included in the solution region or not depends on the inequality symbol.
The boundary line is included if the symbol includes the "or equal to" condition (≤ or ≥). An included boundary line is graphed as a solid line.
When the inequality symbol does not include the "or equal to" condition (< or >), the boundary line is not included in the solution space, and it is graphed as a dashed line.
Once the boundary line is graphed, the half-plane that makes up the solution space is shaded. The shaded half-plane will be to the right or above the boundary line if the inequality can be structured to be of one of these forms:
- x > ... or x ≥ ... ⇒ shading is to the right of the boundary
- y > ... or y ≥ ... ⇒ shading is above the boundary
Otherwise, the shaded solution space will be below or to the left of the boundary line.
_____
Just as a system of linear equations may have no solution, so that may be the case for inequalities. If the boundary lines are parallel and the solution spaces do not overlap, then there is no solution.
_____
The attached graph shows an example of graphed inequalities. The solutions for this system are in the doubly-shaded area to the left of the point where the lines intersect. We have purposely shown both kinds of inequalities (one "or equal to" and one not) with shading both above and below the boundary lines.
Answer: Choice B
12.5 < x < 18.9
================================================
Explanation:
We have a triangle with these side lengths:
- a = 10
- b = 16
- c = x = unknown
Let's assume that b = 16 is the largest side of this triangle.
By the converse of the pythagorean theorem, we need
to be true in order for an acute triangle to happen.
So,

Now let's consider the possibility that the missing side x is actually the longest side.
Using the same theorem as before, we would say,

We found that x > 12.5 and x < 18.9
This is the same as saying 12.5 < x and x < 18.9
Put together, they form the approximate answer of 12.5 < x < 18.9
No 2/3 is not equivalent to 5/6
please can i have a brainliest
It would be zero because you can’t raise 0 to any positive power.
For each choice of the first two digits you have 10<span> choices for the third digit. Thus you have 10x10x10 = 1000 choices for the first three digits. Finally you have </span>10<span>choices for the fourth digit and thus there are 10x10x10x10 = </span>10 000<span> possible 4 digit combinations from </span>0-9<span>.</span>