Consider the equation |(x-3)^2-4|=b. Determine the value of b so that the equation has no solution.
2 answers:
As an absolute value makes any value positive, any negative value of b will cause the equation to be unsolvable.
<span>|(x-3)^2-4|=b since this is an absolute value equation
b can have any value less than zero so that the above is never true, in interval notation:
b=(-oo,0)</span>
You might be interested in
The answers to that would be x=-2
Answer:
Where is the Graph?
Step-by-step explanation:
Answer:
i'll look
Step-by-step explanation:
Answer:
I think c
(not sure though)


By the power rule,

(this seems to be the step you're not getting?)

The next step is to pull out a common factor of
from the antiderivative:

so that the final result is
