Answer:
Therefore the dimensions of the rectangular garden are 23.42 ft by 20.5 ft.
Step-by-step explanation:
Given that,
A rectangular garden of area 480 square feet.
Let length of the rectangular garden be x which is surrounded by fence and width of the rectangular garden be y.
Then xy is the area of the given rectangular garden .
Then,
xy= 480
![\Rightarrow y=\frac{480}{x}](https://tex.z-dn.net/?f=%5CRightarrow%20y%3D%5Cfrac%7B480%7D%7Bx%7D)
The length of the tree sides which are surrounded by brick wall is = 2y+x.
The cost for the brick wall is =Length×cost per feet= $12(2y+x)
The cost for the fencing is =Length×cost per feet= $ 9x
![\therefore C=12(2y+x)+9x](https://tex.z-dn.net/?f=%5Ctherefore%20C%3D12%282y%2Bx%29%2B9x)
Now putting ![y=\frac{480}{x}](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B480%7D%7Bx%7D)
![\therefore C=12(2.\frac{480}{x}+x)+9x](https://tex.z-dn.net/?f=%5Ctherefore%20C%3D12%282.%5Cfrac%7B480%7D%7Bx%7D%2Bx%29%2B9x)
![\Rightarrow C=\frac{11520}{x}+21x](https://tex.z-dn.net/?f=%5CRightarrow%20%20C%3D%5Cfrac%7B11520%7D%7Bx%7D%2B21x)
Differentiating with respect to x
![C'=-\frac{11520}{x^2}+21](https://tex.z-dn.net/?f=C%27%3D-%5Cfrac%7B11520%7D%7Bx%5E2%7D%2B21)
Again differentiating with respect to x
![C''=\frac{23040}{x^3}](https://tex.z-dn.net/?f=C%27%27%3D%5Cfrac%7B23040%7D%7Bx%5E3%7D)
Now we set C'=0
![\therefore-\frac{11520}{x^2}+21=0](https://tex.z-dn.net/?f=%5Ctherefore-%5Cfrac%7B11520%7D%7Bx%5E2%7D%2B21%3D0)
![\Rightarrow\frac{11520}{x^2}=21](https://tex.z-dn.net/?f=%5CRightarrow%5Cfrac%7B11520%7D%7Bx%5E2%7D%3D21)
![\Rightarrow x^2=\frac{11520}{21}](https://tex.z-dn.net/?f=%5CRightarrow%20x%5E2%3D%5Cfrac%7B11520%7D%7B21%7D)
![\Rightarrow x\approx 23.42](https://tex.z-dn.net/?f=%5CRightarrow%20x%5Capprox%2023.42)
.
Since at x=23.42,C''>0. So at x=23.42, the total cost will be minimum.
The width of the rectangular garden is ![y=\frac{480}{x}](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B480%7D%7Bx%7D)
![=\frac{480}{23.42}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B480%7D%7B23.42%7D)
![\approx 20.5](https://tex.z-dn.net/?f=%5Capprox%2020.5)
Therefore the dimensions of the rectangular garden are 23.42 ft by 20.5 ft.
The cost of the material is ![C=\frac{11520}{x}+21x](https://tex.z-dn.net/?f=C%3D%5Cfrac%7B11520%7D%7Bx%7D%2B21x)
![=\frac{11520}{23.42}+21\times 23.42](https://tex.z-dn.net/?f=%3D%5Cfrac%7B11520%7D%7B23.42%7D%2B21%5Ctimes%2023.42)
=$983.70