Answer:
(a) The probability that <em>Y</em>₂₀ exceeds 1000 is 3.91 × 10⁻⁶.
(b) <em>n</em> = 28.09
Step-by-step explanation:
The random variable <em>Y</em>ₙ is defined as the total numbers of dollars paid in <em>n</em> years.
It is provided that <em>Y</em>ₙ can be approximated by a Gaussian distribution, also known as Normal distribution.
The mean and standard deviation of <em>Y</em>ₙ are:
![\mu_{Y_{n}}=40n\\\sigma_{Y_{n}}=\sqrt{100n}](https://tex.z-dn.net/?f=%5Cmu_%7BY_%7Bn%7D%7D%3D40n%5C%5C%5Csigma_%7BY_%7Bn%7D%7D%3D%5Csqrt%7B100n%7D)
(a)
For <em>n</em> = 20 the mean and standard deviation of <em>Y</em>₂₀ are:
![\mu_{Y_{n}}=40n=40\times20=800\\\sigma_{Y_{n}}=\sqrt{100n}=\sqrt{100\times20}=44.72\\](https://tex.z-dn.net/?f=%5Cmu_%7BY_%7Bn%7D%7D%3D40n%3D40%5Ctimes20%3D800%5C%5C%5Csigma_%7BY_%7Bn%7D%7D%3D%5Csqrt%7B100n%7D%3D%5Csqrt%7B100%5Ctimes20%7D%3D44.72%5C%5C)
Compute the probability that <em>Y</em>₂₀ exceeds 1000 as follows:
![P(Y_{n}>1000)=P(\frac{Y_{n}-\mu_{Y_{n}}}{\sigma_{Y_{n}}}>\frac{1000-800}{44.72})\\=P(Z> 4.47)\\=1-P(Z](https://tex.z-dn.net/?f=P%28Y_%7Bn%7D%3E1000%29%3DP%28%5Cfrac%7BY_%7Bn%7D-%5Cmu_%7BY_%7Bn%7D%7D%7D%7B%5Csigma_%7BY_%7Bn%7D%7D%7D%3E%5Cfrac%7B1000-800%7D%7B44.72%7D%29%5C%5C%3DP%28Z%3E%20%204.47%29%5C%5C%3D1-P%28Z%3C4.47%29%5C%5C%5Capprox0.00000391)
**Use a <em>z </em>table for probability.
Thus, the probability that <em>Y</em>₂₀ exceeds 1000 is 3.91 × 10⁻⁶.
(b)
It is provided that P (<em>Y</em>ₙ > 1000) > 0.99.
![P(Y_{n}>1000)=0.99\\1-P(Y_{n}](https://tex.z-dn.net/?f=P%28Y_%7Bn%7D%3E1000%29%3D0.99%5C%5C1-P%28Y_%7Bn%7D%3C1000%29%3D0.99%5C%5CP%28Y_%7Bn%7D%3C1000%29%3D0.01%5C%5CP%28Z%3Cz%29%3D0.01)
The value of <em>z</em> for which P (Z < z) = 0.01 is 2.33.
Compute the value of <em>n</em> as follows:
![z=\frac{Y_{n}-\mu_{Y_{n}}}{\sigma_{Y_{n}}}\\2.33=\frac{1000-40n}{\sqrt{100n}}\\2.33=\frac{100}{\sqrt{n}}-4\sqrt{n} \\2.33=\frac{100-4n}{\sqrt{n}} \\5.4289=\frac{(100-4n)^{2}}{n}\\5.4289=\frac{10000+16n^{2}-800n}{n}\\5.4289n=10000+16n^{2}-800n\\16n^{2}-805.4289n+10000=0](https://tex.z-dn.net/?f=z%3D%5Cfrac%7BY_%7Bn%7D-%5Cmu_%7BY_%7Bn%7D%7D%7D%7B%5Csigma_%7BY_%7Bn%7D%7D%7D%5C%5C2.33%3D%5Cfrac%7B1000-40n%7D%7B%5Csqrt%7B100n%7D%7D%5C%5C2.33%3D%5Cfrac%7B100%7D%7B%5Csqrt%7Bn%7D%7D-4%5Csqrt%7Bn%7D%20%20%5C%5C2.33%3D%5Cfrac%7B100-4n%7D%7B%5Csqrt%7Bn%7D%7D%20%5C%5C5.4289%3D%5Cfrac%7B%28100-4n%29%5E%7B2%7D%7D%7Bn%7D%5C%5C5.4289%3D%5Cfrac%7B10000%2B16n%5E%7B2%7D-800n%7D%7Bn%7D%5C%5C5.4289n%3D10000%2B16n%5E%7B2%7D-800n%5C%5C16n%5E%7B2%7D-805.4289n%2B10000%3D0)
The last equation is a quadratic equation.
The roots of a quadratic equation are:
![n=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}](https://tex.z-dn.net/?f=n%3D%5Cfrac%7B-b%5Cpm%5Csqrt%7Bb%5E%7B2%7D-4ac%7D%7D%7B2a%7D)
a = 16
b = -805.4289
c = 10000
On solving the last equation the value of <em>n</em> = 28.09.