Answer:
No, a regular pentagon does not tessellate.
In a tessellation, all the angles at a point have to add to 360 degrees, as this means there is no overlap, nor are there gaps. To find the interior angle sum of a pentagon, we use the following formula:
(n-2)*180 (where n is the number of sides)
We plug in the number of sides (5) and get:
Angle sum = (5–2)*180
Angle sum = 3*180
Angle sum = 540
Regular pentagons have equal sides and equal angles, so to find the size of the interior angle of a pentagon, we divide the angle sum by 5 and get 108 degrees for every angle.
As I said before, the angles at a point need to add up to 360, so we need to know if 108 divides evenly into 360. If it does, the shape tessellates, and, if it doesn’t, the shape does not.
360/108 = 3.33333…
This means that a regular pentagon does not tessellate.
Hope this helps!
Answer:
2.3 liters leaked
Step-by-step explanation:
0.42 * 5
Answer:
B. 15
Step-by-step explanation:
<em>The chances of </em><em>randomly</em><em> </em><em>selecting</em><em> </em><em>keys</em><em> </em><em>for</em><em> </em><em>a</em><em> </em><em>sports</em><em> </em><em>car</em><em> </em><em>or</em><em> </em><em>convertible</em><em> </em><em>is</em><em> </em><em>5</em><em>/</em><em>4</em><em>0</em><em> </em><em>since</em><em> </em><em>there</em><em> </em><em>are</em><em> </em><em>a</em><em> </em><em>total</em><em> </em><em>of</em><em> </em><em>5</em><em> </em><em>sports</em><em> </em><em>and</em><em> </em><em>convertible</em><em> </em><em>car</em><em> </em><em>keys</em><em> </em><em>and</em><em> </em><em>a</em><em> </em><em>total</em><em> </em><em>of</em><em> </em><em>4</em><em>0</em><em> </em><em>keys</em><em> </em><em>overall</em><em>.</em><em> </em><em>We</em><em> </em><em>then</em><em> </em><em>multiply</em><em> </em><em>that</em><em> </em><em>5</em><em>/</em><em>4</em><em>0</em><em> </em><em>by</em><em> </em><em>1</em><em>2</em><em>0</em><em> </em><em>because</em><em> </em><em>Sam</em><em> </em><em>randomly</em><em> </em><em>selects</em><em> </em><em>a</em><em> </em><em>key</em><em> </em><em>1</em><em>2</em><em>0</em><em> </em><em>times</em><em>.</em><em> </em>
5/40 × 120 = 15
Answer
Find out the The numerical value of A - B and the numerical value of B - A .
To prove
As given
The expression 113.47 - (43.72 - 26.9) represents A.
The expression 113.47 - (26.9 - 43.72) represents B .
Thus
A - B = 113.47 - (43.72 - 26.9) - ( 113.47 - (26.9 - 43.72))
First solving the bracket terms.
A - B = 113.47 - (43.72 - 26.9) - 113.47 + (26.9 - 43.72)
= 113.47 - 16.82 - 113.47 - 16.82
= 113.47 - 113.47 - 16.82 - 16.82
= -33.64
Therefore the value of A- B is -33.64 .
Thus
B - A = 113.47 - (26.9 - 43.72) - (113.47 - (43.72 - 26.9))
First solving the bracket terms.
B - A = 113.47 - (26.9 - 43.72) - 113.47 + (43.72 - 26.9)
= 113.47 + 16.82 - 113.47 + 16.82
= 33.64
Therefore the value of the A - B is -33.64 and B - A is 33.64 .
The scale factor needs to be squared first before multiplying it to the area of parallelogram PQRS to find the area of dilation P'Q'R'S'. So in other words,
Area of P'Q'R'S' = 4² x Area of PQRS = 16 x Area of PQRS