44-6=38/2=19+6=25+19=44
The numbers are 19 and 25
The complete question is
Find the volume of each sphere for the given radius. <span>Round to the nearest tenth
we know that
[volume of a sphere]=(4/3)*pi*r</span>³
case 1) r=40 mm
[volume of a sphere]=(4/3)*pi*40³------> 267946.66 mm³-----> 267946.7 mm³
case 2) r=22 in
[volume of a sphere]=(4/3)*pi*22³------> 44579.63 in³----> 44579.6 in³
case 3) r=7 cm
[volume of a sphere]=(4/3)*pi*7³------> 1436.03 cm³----> 1436 cm³
case 4) r=34 mm
[volume of a sphere]=(4/3)*pi*34³------> 164552.74 mm³----> 164552.7 mm³
case 5) r=48 mm
[volume of a sphere]=(4/3)*pi*48³------> 463011.83 mm³----> 463011.8 mm³
case 6) r=9 in
[volume of a sphere]=(4/3)*pi*9³------> 3052.08 in³----> 3052 in³
case 7) r=6.7 ft
[volume of a sphere]=(4/3)*pi*6.7³------> 1259.19 ft³-----> 1259.2 ft³
case 8) r=12 mm
[volume of a sphere]=(4/3)*pi*12³------>7234.56 mm³-----> 7234.6 mm³
Acute right complementary adjacent
Given that the radius of the circle is 6 cm.
The central angle is 120°
We need to determine the length of AB.
<u>Length of AB:</u>
The length of AB can be determined using the formula,

Substituting
and
in the above formula, we get;

Simplifying the values, we get;



Substituting π = 3.14, we have;


Thus, the arc length of AB is 12.56 cm
2x² - 3x - 20
40
2 20
4 10
5 8
2x² - 8x 5x - 20
2x(x - 4) 5(x - 4)
(2x + 5) (x - 4)
2x + 5 = 0 x - 4 = 0
2x = -5 x = 4
x = -5/2
C) x = -2.5 and 4