Use photomath it’s faster and you get correct Answers!<3 have a good dayy
Step-by-step explanation:
Simple interest formula

Compound interest formula

a.

Simple interest is $125
b
. 
Compound interest is $125
c. the result for both a and b are the same
d.

the simple interest is $375
e
. ![A = 5000 (1 + \frac{0.025}{1})^{1*3}] \\A=5000(1.025)^3 \\A=5000(1.077)\\A= 5385](https://tex.z-dn.net/?f=A%20%3D%205000%20%281%20%2B%20%5Cfrac%7B0.025%7D%7B1%7D%29%5E%7B1%2A3%7D%5D%20%5C%5CA%3D5000%281.025%29%5E3%20%5C%5CA%3D5000%281.077%29%5C%5CA%3D%205385)
the compound interest is $385
f. the result compared, compound interest is $10 more than simple interest
g.

the simple interest is $600
h.
![A = 5000 (1 + \frac{0.02}{1})^{1*6}] \\A=5000(1.12)^6 \\A=5000(1.9738) \\A= 9869](https://tex.z-dn.net/?f=A%20%3D%205000%20%281%20%2B%20%5Cfrac%7B0.02%7D%7B1%7D%29%5E%7B1%2A6%7D%5D%20%5C%5CA%3D5000%281.12%29%5E6%20%5C%5CA%3D5000%281.9738%29%20%5C%5CA%3D%209869)
the compound interest is $4869
i. the result from g and h, h is over 8 times bigger than g.
j. interest compound annually is not the same as simple interest, only for the case of a and b seeing that it is for 1 year. but for 2years and above there is difference as seen in c to h
There are a total of 297 students in the 7th grade. Rough estimates would say that about half of that number are boys and half are girls. Asking only 50 random girls would be biased because not only would it not be all of the girls (the number of girls would be around 148 or 149) but it would also be ignoring the roughly 148 to 149 boys there are on estimate. The sample would be biased because it would be ignoring the opinions of more than half the seventh grade.