Con un sistema de ecuaciones, tiene-se que:
- Cada pera cuesta $1.
- Cada manzana cuesta $3.
--------------
- Usando la información dada en el texto, se construye un<em> sistema de ecuaciones</em> para encontrar el precio de cada pera e de cada manzana.
- Yo diré que el precio de cada manzana es x y de cada pera es de y.
--------------
- <u>La compra de 6 manzanas y 8 peras cuesta $26</u>, lo que significa que una de las ecuaciones es:

- <u>Cada manzana cuesta lo triple de cada pera</u>, lo que significa que la outra ecuacione es:

--------------
Aplicando esta relacion en la primera ecuación, se encontra el precio de cada pera.





Cada pera cuesta $1.
--------------
Para cada manzana:

Cada manzana cuesta $3.
Un problema similar es dado en brainly.com/question/24637096
Answer:
5x7=35
Step-by-step explanation:
Answer:
sample 44
Step-by-step explanation:
math is not it
Answer:
The shadow is decreasing at the rate of 3.55 inch/min
Step-by-step explanation:
The height of the building = 60ft
The shadow of the building on the level ground is 25ft long
Ѳ is increasing at the rate of 0.24°/min
Using SOHCAHTOA,
Tan Ѳ = opposite/ adjacent
= height of the building / length of the shadow
Tan Ѳ = h/x
X= h/tan Ѳ
Recall that tan Ѳ = sin Ѳ/cos Ѳ
X= h/x (sin Ѳ/cos Ѳ)
Differentiate with respect to t
dx/dt = (-h/sin²Ѳ)dѲ/dt
When x= 25ft
tanѲ = h/x
= 60/25
Ѳ= tan^-1(60/25)
= 67.38°
dѲ/dt= 0.24°/min
Convert the height in ft to inches
1 ft = 12 inches
Therefore, 60ft = 60*12
= 720 inches
Convert degree/min to radian/min
1°= 0.0175radian
Therefore, 0.24° = 0.24 * 0.0175
= 0.0042 radian/min
Recall that
dx/dt = (-h/sin²Ѳ)dѲ/dt
= (-720/sin²(67.38))*0.0042
= (-720/0.8521)*0.0042
-3.55 inch/min
Therefore, the rate at which the length of the shadow of the building decreases is 3.55 inches/min
Answer:
0.4
Step-by-step explanation: