1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka57 [31]
3 years ago
13

A remote ranch has a cylindrical water storage tank. It has a vertical central axis, a diameter of 16 ft, the sides are 5 ft hig

h, and it is full to the brim. The depth of this water is 4 ft. How much work (in ft-lb) would be required to pump all of the water over the upper rim? (Use the fact that water weighs 62.5 lb/ft3. Round your answer to the nearest integer.)

Mathematics
1 answer:
Vikentia [17]3 years ago
5 0

Answer and Step-by-step explanation:

Given: diameter = 16ft                                                                                                                                             height = 5 ft.                                                                                                                                                                      Depth = 4ft

Work =?

As we know that work = force x distance

W= distance x density x volume                      

W= ʃ04 (5-y) 62.5x ∏ (d/2)2dy                   (area = ∏r2     ,    r= d/2)

      = 62.5 ʃ04 (5-y) ∏ (4y) dy

      =62.5∏ ʃ04 (5-y) 4ydy

        =62.5∏ ʃ04 20y-4y2dy

      =62.5∏ |20y2/2 – 4y3/3|04

      =62.5∏ |74.66|

       =14659ft.lbs (approximately)

You might be interested in
<img src="https://tex.z-dn.net/?f=%E2%96%AA%E2%96%AA%E2%96%AA%E2%96%AA%E2%96%AA%E2%96%AA%E2%96%AA%E2%96%AA%E2%96%AA%E2%96%AA%E2%
garri49 [273]

Answer:

<h3>METHOD I:</h3>

(by using the first principle of differentiation)

We have the <u>"Limit definition of Derivatives"</u>:

\boxed{\mathsf{f'(x)= \lim_{h \to 0} \{\frac{f(x+h)-f(x)}{h} \} ....(i)}}

<em>Here, f(x) = sec x, f(x+h) = sec (x+h)</em>

  • <em>Substituting these in eqn. (i)</em>

\implies \mathsf{f'(x)= \lim_{h \to 0} \{\frac{sec(x+h)-sec(x)}{h} \} }<em />

  • <em>sec x can be written as 1/ cos(x)</em>

<em />\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{1}{h} \{\frac{1}{cos(x+h)} -\frac{1}{cos(x)} \} }<em />

  • <em>Taking LCM</em>

<em />\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{1}{h} \{\frac{cos(x)-cos(x+h)}{cos(x)cos(x+h)}  \} }<em />

  • <em>By Cosines sum to product formula, i.e.,</em>

\boxed{\mathsf{cos\:A-cos\:B=-2sin(\frac{A+B}{2} )sin(\frac{A-B}{2} )}}

<em>=> cos(x) - cos(x+h) = -2sin{(x+x+h)/2}sin{(x-x-h)/2}</em>

\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{2sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\:  \lim_{h \to 0} \frac{sin(\frac{h}{2} )}{h}   }

  • <em>I shifted a 2 from the first limit to the second limit, since the limits ar ein multiplication this transmission doesn't affect the result</em>

\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\:  \lim_{h \to 0} \frac{2sin(\frac{h}{2} )}{h}   }

  • <em>2/ h can also be written as 1/(h/ 2)</em>

\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\:  \lim_{h \to 0} \frac{1\times sin(\frac{h}{2} )}{\frac{h}{2} }   }

  • <em>We have limₓ→₀ (sin x) / x = 1. </em>

<em />\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+\frac{h}{2} )}{cos(x+h)cos(x)}\:.\: 1  }<em />

  • <em>h→0 means h/ 2→0</em>

<em>Substituting 0 for h and h/ 2</em>

<em />\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x+0)}{cos(x+0)cos(x)} }<em />

\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x)}{cos(x)cos(x)} }

\implies \mathsf{f'(x)= \lim_{h \to 0} \frac{sin(x)}{cos(x)}\times \frac{1}{cos x}  }

  • <em>sin x/ cos x is tan x whereas 1/ cos (x) is sec (x)</em>

\implies \mathsf{f'(x)=  tan(x)\times sec(x)  }

Hence, we got

\underline{\mathsf{\overline{\frac{d}{dx} (sec(x))=sec(x)tan(x)}}}

-  - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3>METHOD II:</h3>

(by using other standard derivatives)

\boxed{ \mathsf{ \frac{d}{dx} ( \sec \: x) =  \sec x   \tan x }}

  • sec x can also  be written as (cos x)⁻¹

We have a standard derivative for variables in x raised to an exponent:

\boxed{ \mathsf{ \frac{d}{dx}(x)^{n}   = n(x)^{n - 1} }}

Therefore,

\mathsf{ \frac{d}{dx}( \cos x)^{ - 1} =  - 1( \cos \: x) ^{( - 1 - 1}     } \\   \implies \mathsf{\  - 1( \cos \: x) ^{- 2 }}

  • Any base with negative exponent is equal to its reciprocal with same positive exponent

\implies \: \mathsf{  - \frac{1}{ (\cos x)  {}^{2} } }

The process of differentiating doesn't just end here. It follows chain mechanism, I.e.,

<em>while calculating the derivative of a function that itself contains a function, the derivatives of all the inner functions are multiplied to that of the exterior to get to the final result</em>.

  • The inner function that remains is cos x whose derivative is -sin x.

\implies \mathsf{ -  \frac{1}{ (\cos x  )^{2} }  \times ( -  \sin x)   }

  • cos²x can also be written as (cos x).(cos x)

\implies \mathsf{   \frac{ \sin x }{ \cos x   }  \times (  \frac{1}{cos x} )   }

  • <u>sin x/ cos x</u> is tan x, while <u>1/ cos x</u> is sec x

\implies \mathsf{    \tan x  \times  \sec x  }

= sec x. tan x

<h3>Hence, Proved!</h3>
7 0
3 years ago
A farmer has some cows and horses. All the animals are either brown or black. The table shows how many of each
ludmilkaskok [199]

Answer:

P = 1/5 = 0.20 = (20%)

Step-by-step explanation:

there are 12 horses and 8 cows, in total there are 20 animals

of which 4 horses are brown

Then

P=\frac{4}{20} =\frac{1}{5}

Hope this helps

5 0
2 years ago
The coordinates of the following points represent the vertices of a
Setler [38]
I dont know i wish i could help ask me anytime with any thing else
7 0
3 years ago
Read 2 more answers
What’s the surface area in square units if right I’ll mark brainleiest
erik [133]

Answer:  349 square units

============================================

Work Shown:

  • L = 5.5 = length
  • W = 5 = width
  • H = 14 = height

SA = surface area of rectangular prism

SA = 2*(L*W + L*H + W*H)

SA = 2*(5.5*5 + 5.5*14 + 5*14)

SA = 2*(27.5 + 77 + 70)

SA = 2*(174.5)

SA = 349

The surface area is 349 square units.

7 0
3 years ago
Read 2 more answers
I don't understand.......
devlian [24]

Answer:

Step-by-step explanation:

the dot is on the 32 and the line is the 3rd line

8 0
3 years ago
Other questions:
  • Find the length of RA. A. 42 B. 84 C. 14 D. 7
    13·2 answers
  • Up and Running Auto Shop keeps track of their regular customers' data to see if there is a relationship between the life of a ca
    6·2 answers
  • A rectangular garden is fenced on all sides with 256 feet of fencing. The garden is 8 feet longer than it is wide. Find the leng
    6·2 answers
  • A boat dealers sells 7 fishing boats for every 3 speed boats it sells
    8·1 answer
  • Help please!!! <br> Having trouble on question 6
    15·1 answer
  • 52.8 into a fraction
    8·2 answers
  • Translate to an algebraic equation<br> 5 less than one-half x is fifteen.
    11·1 answer
  • The formula for volume of this rectangular prism is:
    9·1 answer
  • Charlene went to the grocery store to pick up some items for her party. She bought 3 times as many bags of potato chips as bags
    9·1 answer
  • Pythagorean theorem digital escape can you find the length and area and type the correct code? ​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!