1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adoni [48]
3 years ago
14

Solve the equation 25x²+100x+200=0.

Mathematics
1 answer:
k0ka [10]3 years ago
6 0

Answer:

x = -2+2i ,x = -2-2i

Step-by-step explanation:

given,

equation 25x²+100x+200=0

dividing the equation by 25 on both side

x²+4x+8=0

using

x = \dfrac{-b\pm \sqrt{b^2-4ac}}{2a}

x = \dfrac{-4\pm \sqrt{4^2-4\times 1\times 8}}{2}

x = \dfrac{-4+ \sqrt{4^2-4\times 1\times 8}}{2},x = \dfrac{-4-\sqrt{4^2-4\times 1\times 8}}{2}

x = \dfrac{-4+ \sqrt{-16}}{2},x = \dfrac{-4-\sqrt{-16}}{2}

x = \dfrac{-4+ 4i}{2},x = \dfrac{-4-4i}{2}

x = -2+2i ,x = -2-2i

You might be interested in
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
4 years ago
Read 2 more answers
Mr Black. 32 kg mg jars of peanut butter for school snacks. he spread the peanut butter on Bagels to feed 60 students. How many
hoa [83]

Answer:

Amount of peanut butter each student get = 533.34 gram (Approx.)

Step-by-step explanation:

Given:

Amount of peanut butter Mr black has = 32 kg

Total number of students = 60 students

Find:

Amount of peanut butter each student get

Computation:

Amount of peanut butter Mr black has = 32 kg

Amount of peanut butter Mr black has = 32 x 1,000 gram

Amount of peanut butter Mr black has = 32,000 gram

Amount of peanut butter each student get = Amount of peanut butter Mr black has / Total number of students

Amount of peanut butter each student get = 32,000 / 60

Amount of peanut butter each student get = 533.33

Amount of peanut butter each student get = 533.34 gram (Approx.)

4 0
3 years ago
Nicolas weighs 37 kilograms 95 grams. Jacques weighs 4,650 grams less than Nicolas. How much does Jacques weigh?
slava [35]

Step-by-step explanation:

convert to g

37 095 g

37 095-4650=32 445 g / 32.455 kg

3 0
3 years ago
PLEASE HELP QUICK :) multiple choice.
Damm [24]

Answer:

  • C. f(x) = x³ + 10x² + 7x - 18

Step-by-step explanation:

If the function has a factor of x + 9, then the function will have a zero output at x = -9

<u>Lets verify:</u>

  • A. f(-9) = (-9)³ - 8*(-9)² - 11*(-9) + 18 = -1260, No
  • B. f(-9) = (-9)³ + 10*(-9)² + 7*(-9) - 27 =  -9, No
  • C. f(-9) = (-9)³ + 10*(-9)² + 7*(-9) - 18 = 0, Yes
  • D. f(-9) = (-9)³ - 8*(-9)² + 11*(-9) + 27 = -1449, No
3 0
3 years ago
F(x)=2x^4+7x^3-2x^2-19x-12
kirill115 [55]

what do you need done with this question. like do you need it simplified or facotr by grouping what i need more info

7 0
3 years ago
Other questions:
  • Please help, operation with rational numbers XXIV
    14·1 answer
  • . (1 pt) A store sold 330 yards of fabric. It charged $11 a yard. What is the total cost of the fabric?
    7·1 answer
  • Can the sides of a triangle have lengths 1, 7, and 11? Explain
    12·1 answer
  • Determine if the number is written in scientific notation. If not explain.
    15·2 answers
  • Calculate the perimeter of a rectangle with a length of 17.5 cm and a width of 40 mm in cm
    11·1 answer
  • Luke wants to reduce the area of his rectangular garden by one-fourth. The expression 1/4 lw can be used to represent this chang
    6·1 answer
  • PleAse help ASAP!!!!!!
    10·1 answer
  • 3/2 Find three rational numbers between and 5/2 ?​
    8·1 answer
  • 23. Jada makes sparkling juice by mixing 2 cups of sparkling water with every 3 cups of
    5·2 answers
  • An equiangular triangle has one side of length six inches. What is the height of the triangle, drawn from that side, to the near
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!