Answer: D, 6km/hr.
Step-by-step explanation:
Heather can finish a 12-kilometer race in 2 hours, and now we have to find how many kilometers she can ride/run at in 1 hour.
How many hours can Heather run in 1 hour? To solve that, we can use the equation 12 ÷ 2.
12 ÷ 2 = 6.
Therefore, if Heather keeps her pace constant, then her rate will be 6km/hr, or D.
Total height of lumber, H = 10 1/2 feet = 21/2 feet .
Height of side panel, h = 5 2/3 feet = 17/3 feet .
Now,
Extra lumber required, L = 2 × Height of side panel - Total height of lumber
![L=[2\times (\dfrac{17}{3})]-\dfrac{21}{2}\\\\L = \dfrac{5}{6}\ feet](https://tex.z-dn.net/?f=L%3D%5B2%5Ctimes%20%28%5Cdfrac%7B17%7D%7B3%7D%29%5D-%5Cdfrac%7B21%7D%7B2%7D%5C%5C%5C%5CL%20%3D%20%5Cdfrac%7B5%7D%7B6%7D%5C%20feet)
Therefore, extra lumber required is
feet.
Hence, this is the required solution.
2 1/2 groups of 4/5 fill in two. Another way of saying that is what is 2 divided by 4/5. The answer is 2 1/2.
~Deceptiøn
Answer:
5x^2+22x-12 x cannot be -5, -4, -2
(x+5)(x+4)(x+2)
Step-by-step explanation:
In order to solve this, your denominator must be the same. Let's start by writing out the two different quadratic formulas:
x^2 + 6x + 8 <-- This should factor out to (x+4)(x+2)
x^2 + 7x + 10 <-- This should factor out to (x+5)(x+2)
Now that you have factored out the two quadratics, plug them into the equation.
5x - 3
(x+4)(x+2) (x+5)(x+2)
Now as we know, -2 cannot be x because it will turn the entire equation undefined. Multiple top and bottom with (x+5) on the right side and (x+4) on the left side.
5x (x+5) - 3(x+4)
(x+5)(x+4)(x+2) (x+5)(x+4)(x+2)
Focus on the top. 5x(x+5) will turn out to be 5x^2+25x. 3(x+4) will turn out to be 3x+12. Combine the two equations because now they are equal to each other and do the subtraction:
5x^2+25x - (3x+12) = 5x^2+22x-12 x cannot be -5, -4, -2
(x+5)(x+4)(x+2) (x+5)(x+4)(x+2)