Step-by-step explanation:
The statement in the above question is True.
Sum of three prime numbers (other than two) is always odd.
Going by Christian Goldbach number theory ,
- Goldbach stated that every odd whole number greater than 5 can be written as sum of three prime numbers .
Lets take an example,
- 3 + 3 + 5 = 11
- 3 + 5 + 5 = 13
- 5 + 5 + 7 = 17
Later on in 2013 the Mathematician <u>Harald Helfgott</u> proved this theory true for all odd numbers greater than five.
The solution to the equation is p = 1/3 and q = undefined
<h3>How to solve the equation?</h3>
The equation is given as:
p^2 - 2qp + 1/q = (p - 1/3)
The best way to solve the above equation is by the use of a graphing calculator i.e. graphically
However, it can be solved algebraically too (to some extent)
Recall that the equation is given as:
p^2 - 2qp + 1/q = (p - 1/3)
Split the equation
So, we have
p^2 - 2qp + 1/q = 0
p - 1/3 = 0
Solve for p in p - 1/3 = 0
p = 1/3
Substitute p = 1/3 in p^2 - 2qp + 1/q = 0
So, we have
(1/3)^2 - 2q(1/3) + 1/q = 0
This gives
1/9 - 2/3q + 1/q = 0
This gives
2/3q + 1/q = -1/9
Multiply though by q
So, we have
2/3q^2 + 1 = -1/9q
Multiply through by 9
6q^2 + 9 = -q
So, we have
6q^2 + q + 9 = 0
Using the graphing calculator, we have
q = undefined
Hence. the solution to the equation is p = 1/3 and q = undefined
Read more about equations at:
brainly.com/question/13763238
#SPJ1
Answer:
A = 74295.
Step-by-step explanation:
74*9*
- the last number must be a 0 or a 5.
So we try 74090/45 - not an integer
74095/45 = No
74190/45 No
74195/45 No
74295 / 45 = 1651 So that's it,
Answer:
1 75/100 or 3/4
Step-by-step explanation:
if you simplify 1 75/100 its 3/4