Answer:

Step-by-step explanation:
As x approaches 10 from the right side, h(x) approaches 18.5 but never touches it.
Answer:
length is 78
Step-by-step explanation:
Perimeter of rectangle is P = 2 (l +w)
278 = 2(l + 61)
l = 78
Answer:
QR = 65.4 m
Step-by-step explanation:
a. Apply Law of Cosines to find QR:
p² = q² + r² - 2qr × Cos P
p = QR = ?
q = PR = 150 m
r = PQ = 120 m
P = 25°
Plug in the values
p² = 150² + 120² - (2)(150)(120) × Cos(25°)
p² = 22,500 + 14,400 - 36,000 × 0.9063
p² = 36,900 - 32,626.8
p² = 4,273.2
p = √4,273.2
p ≈ 65.4 m (nearest tenth)
QR = 65.4 m
9514 1404 393
Answer:
maximum difference is 38 at x = -3
Step-by-step explanation:
This is nicely solved by a graphing calculator, which can plot the difference between the functions. The attached shows the maximum difference on the given interval is 38 at x = -3.
__
Ordinarily, the distance between curves is measured vertically. Here that means you're interested in finding the stationary points of the difference between the functions, along with that difference at the ends of the interval. The maximum difference magnitude is what you're interested in.
h(x) = g(x) -f(x) = (2x³ +5x² -15x) -(x³ +3x² -2) = x³ +2x² -15x +2
Then the derivative is ...
h'(x) = 3x² +4x -15 = (x +3)(3x -5)
This has zeros (stationary points) at x = -3 and x = 5/3. The values of h(x) of concern are those at x=-5, -3, 5/3, 3. These are shown in the attached table.
The maximum difference between f(x) and g(x) is 38 at x = -3.
Answer:
C. n=23; p^=0.5
Step-by-step explanation:
Normal distribution is symmetrical about the mean.
So, p should be close to ½