1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hram777 [196]
3 years ago
6

Does anyone know the answer?

Mathematics
2 answers:
Marysya12 [62]3 years ago
7 0

Answer:

210 \:  \:  \: degrees

Step-by-step explanation:

<em>Two</em><em> </em><em>equilateral</em><em> </em><em>triangle</em><em>s</em><em> </em><em>and</em><em> </em><em>a</em><em> </em><em>square</em><em> </em><em>are</em><em> </em><em>join</em><em> </em><em>together</em><em>.</em>

<em>So</em><em>,</em><em> </em><em>in</em><em> </em><em>a</em><em> </em><em>equilateral</em><em> </em><em>triangle</em><em> </em><em>all</em><em> </em><em>the</em><em> </em><em>angles</em><em> </em><em>are</em><em> </em><em>equal</em><em>.</em><em> </em><em>which</em><em> </em><em>means</em><em> </em><em>a</em><em>n</em><em> </em><em>angle</em><em> </em><em>measures</em><em> </em><em>6</em><em>0</em><em> </em><em>degrees</em><em>.</em>

<em>Also</em><em> </em><em>in</em><em> </em><em>a</em><em> </em><em>square</em><em> </em><em>all</em><em> </em><em>the</em><em> </em><em>a</em><em>n</em><em>g</em><em>l</em><em>e</em><em>s</em><em> </em><em>are</em><em> </em><em>equal</em><em> </em><em> </em><em>.</em><em> </em><em>it</em><em> </em><em>measures</em><em> </em><em>9</em><em>0</em><em> </em><em>degrees</em><em>.</em>

<em><u>x</u></em><em><u> </u></em><em>=</em><em> </em><em> </em><em>two</em><em> </em><em>triangle</em><em> </em><em>=</em><em> </em><em>6</em><em>0</em><em> </em><em>+</em><em>6</em><em>0</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>square</em><em> </em><em>=</em><em> </em><em>9</em><em>0</em>

60 + 60 + 90 \\ =  210

<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em><em> </em>

<em>brainliest</em><em> </em><em>appreciated</em><em> </em>

<em>good</em><em> </em><em>luck</em><em>!</em><em> </em><em>have</em><em> </em><em>a</em><em> </em><em>nice</em><em> </em><em>day</em><em>!</em>

melamori03 [73]3 years ago
6 0

<em>value \: of  \: x \: is \: 210 \\please \: see \: the \: attached \: picture \\ for \: full \: solution \\ hope \: it \: helps</em>

You might be interested in
No links <br> 10pts<br> for answer 1 variables or values for answer 2 do not satisfy or satisfy
gulaghasi [49]

Answer:

hello

Step-by-step explanation:

6 0
3 years ago
Please can someone help me basic geometry??? I need extra credit for my class
puteri [66]

Answer: I believe the first one is ASA, and the third one is SAS, however for the second one, I think it’s none or ASA

3 0
3 years ago
Solve the right triangle shown in the figure BC = 1.6in&lt; A=48.8 C =90
yKpoI14uk [10]
Drawing a diagram to represent the information you've given, the only angle we are missing is B.  We can find that by subtracting the two we're given from 180:
180 - 90 - 48.8 = 41.2
<em>m</em>∠<em>B</em> = 41.2°.
We can use the angles and the one side we're given to find the remaining sides.  Since we do not know the length of the hypotenuse, AB, we cannot use sine or cosine.  We must use tangent (the ratio for tangent is opposite/adjacent):
\tan 41.2 = \frac{x}{1.6}
Multiply both sides by 1.6:
1.6 \tan 41.2 = x&#10;\\ 3.67 = x
This is the length of side AC, which is opposite to angle B.
To find the length of AB we can use the Pythagorean Theorem:
(1.6)^2+(3.67)^2=c^2&#10;\\ 2.56+13.4689=c^2&#10;\\ 16.0289=c^2&#10;\\ \sqrt{16.0289} = \sqrt{c^2}&#10;\\ 4=c
The length of side AC, the hypotenuse, is 4 inches.
3 0
4 years ago
Read 2 more answers
The length of a rectangle is three times the width of the rectangle. The area of the rectangle is 48cm2. Draw the rectangle on t
Schach [20]

Answer:

<em>The width is 4 cm</em>

<em>The length is 12 cm.</em>

Step-by-step explanation:

<u>Area of a rectangle</u>

Given a rectangle of width W and length L, its area is calculated as follows:

A=W\cdot L

The area of the given rectangle is 48 cm^2, and the length is three times the width, thus:

L = 3W

Substituting into the formula of the area:

W\cdot L=48

W\cdot 3W=48

Simplifying:

3W^2=48

Solving:

W^2=48/3=16

W=\sqrt{16}=4

The width is 4 cm. Find the length:

L=3W=3*4= 12

The length is 12 cm.

The image attached shows the rectangle on the centimeter grid

8 0
4 years ago
Find the equation of the line that is perpendicular to the given line and passes through the given point. Enter your answer in s
brilliants [131]

Step-by-step explanation:

so this is the answer for the problem for you

7 0
3 years ago
Other questions:
  • The model of a trinomial is shown. An algebra tile configuration. 0 tiles are in the Factor 1 spot and 0 tiles are in the Factor
    13·2 answers
  • HURRY ILL MARK BRAINLIEST
    9·1 answer
  • On a road, a bike sign in the shape of an isosceles trapezoid is to be painted. The sign and its dimensions are shown below. Wha
    13·1 answer
  • URGENT <br><br> What else would need to be congruent to show that AABC= ADEF by the<br> AAS theorem?
    13·1 answer
  • Rob has 7 ones Nick has five ones they put all their ones together what number do they make
    12·2 answers
  • I will mark Brainliest please help <br> This is gonna be due soon!<br> 6 th grade math work
    9·1 answer
  • Write down the first even multiple of 9
    8·2 answers
  • Find the area of this circle. Use
    5·1 answer
  • If a car travels 340miles on 20 gallons of gas, how far can it travel on 25 gallons of gas
    5·1 answer
  • If an arrow is shot upward on Mars with a speed of 56 m/s, its height in meters t seconds later is given by y = 56t − 1.86t2.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!