Answer:
10·b = 60
Step-by-step explanation:
The given system of equation is presented as follows;
5·a + 5·b = 25...(1)
-5·a + 5·b = 35...(2)
Given that the coefficient of a in equation (1) is equal in magnitude but opposite in sign to the coefficient of 'a' in equation (2), to eliminate the variable 'a' when using the elimination method, we add both equations as follows;
5·a + 5·b + (-5·a + 5·b) = 25 + 35 = 60
5·a - 5·a + 5·b + 5·b = 60
5·a - 5·a = 0
5·b + 5·b = 10·b
∴ 5·a - 5·a + 5·b + 5·b = 60 = 0 + 10·b = 10·b
∴ 10·b = 60
Answer:
B
Step-by-step explanation:
It's <span>extraneous. I know this because it leads to a straight answer.
</span>
<span><span><span><span>3x</span>+5</span>+<span>15</span></span>=<span><span>2x</span>+5</span></span><span><span><span><span>
26x</span>+15</span><span>5x</span></span>=<span><span>2x</span>+5</span></span>
<span><span><span>26x</span>+15</span>=<span><span>10<span>x2</span></span>+<span>25x</span></span></span><span><span><span><span>
26x</span>+15</span>−<span>(<span><span>10<span>x2</span></span>+<span>25x</span></span>)</span></span>=<span><span><span>10<span>x2</span></span>+<span>25x</span></span>−<span>(<span><span>10<span>x2</span></span>+<span>25x</span></span>)
</span></span></span>
−10x2+x+15=0<span>
x=<span><span><span>−b</span>±<span>√<span><span>b2</span>−<span><span>4a</span>c</span></span></span></span><span>2a</span></span></span><span>
x=<span><span><span>−<span>(1)</span></span>±<span>√<span><span><span>(1)</span>2</span>−<span><span>4<span>(<span>−10</span>)</span></span><span>(15)</span></span></span></span></span><span>2<span>(<span>−10</span>)</span></span></span></span><span>
x=<span><span><span>−1</span>±<span>√601</span></span><span>−20</span></span></span><span><span>
x=<span><span>120</span>+<span><span><span><span><span>−1</span>20</span><span>√601</span></span><span> or </span></span>x</span></span></span>=<span><span>120</span>+<span><span>120</span><span>√601</span></span></span></span><span>
x=<span><span>120</span>+<span><span><span>−1</span>20</span><span>√601
</span></span></span></span><span>
x=<span><span>120</span>+<span><span>120</span><span>√601</span></span></span></span>
<span><span>x=<span><span>120</span>+<span><span><span><span><span>−1</span>20</span><span>√601</span></span><span> or </span></span>x</span></span></span>=<span><span>120</span>+<span><span>120</span><span>√<span>601
Hoped I helped!</span></span></span></span></span>
Answer:
x ≈ 18
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Order of Operations: BPEMDAS
- Equality Properties
<u>Trigonometry</u>
Law of Cosines: a^2 = b^2 + c^2 - 2(b)(c)cosA
- a is a side length
- b is a side length
- c is a side length
- A is an angle corresponding with side a
Step-by-step explanation:
<u>Step 1: Define</u>
a = x
A = 30°
b = 16
c = 30
<u>Step 2: Solve for </u><em><u>x</u></em>
- Substitute: x² = 16² + 30² - 2(16)(30)cos30°
- Exponents: x² = 256 + 900 -2(16)(30)cos30°
- Evaluate: x² = 256 + 900 -2(16)(30)(√3/2)
- Multiply: x² = 256 + 900 - 480√3
- Add: x² = 1156 - 480√3
- Subtract: x² = 324.616
- Isolate <em>x</em>: x = √324.616
- Evaluate: x = 18.0171
- Round: x ≈ 18
Question
find the volume of a cylinder whose height is 7 cm and radius is 10 cmAnswer:soln
volume of cylinder= pie r ^h where pie = 22/7
height=7 cm
radius=10 cm
now,
volume of cylinder= 22/7*10*10*7cm
V≈2199.11cm³