1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lera25 [3.4K]
3 years ago
8

Solving Exponential and Logarithmic Equations In Exercise, solve for x. 100(1.21)x = 110

Mathematics
1 answer:
SVETLANKA909090 [29]3 years ago
8 0

Answer:X=110/121

Step-by-step explanation:

Multiply 100 by 1.21 then by x

121x=110

Divide both side by 121

X=110/121

X=0.91

You might be interested in
A car with 26 miles per gallon. How many miles can it travle on 2 1/2 gallon of gas?
Oliga [24]
The car can travel 75 miles on 2 1/2 gal. of gas
5 0
3 years ago
Read 2 more answers
Helps are really appreciated!!
Nastasia [14]

Answer:

a) 58.24 square centimeters

b) 5cm

Step-by-step explanation:

a) Area of a parallelogram

The formula for the Area of a parallelogram = Base × Height

Height : 5.2cm

Base : 11.2cm

Area = 5.2 cm × 11.2cm

= 58.24 square centimeters

b) Volume of a cuboid

The formula for the Volume of a cuboid = Length × Width × Height

7cm = Width

3cm = Length

y = Height

Volume = 105cm³

We are to find y

Hence,

105cm³ = 7cm × 3cm × y

y = 105cm³/7cm × 3cm

y = 5cm

8 0
3 years ago
Find the number of terms, n, in the arithmetic series whose first term is 13, the common difference is 7, and the sum is 2613.
siniylev [52]

Answer:

A

Step-by-step explanation:

Recall that the sum of an arithmetic series is given by:

\displaystyle S = \frac{n}{2}\left(a + x_n\right)

Where <em>n</em> is the number of terms, <em>a</em> is the first term, and <em>x</em>_<em>n</em> is the last term.

We know that the initial term <em>a</em> is 13, the common difference is 7, and the total sum is 2613. Since we want to find the number of terms, we want to find <em>n</em>.

First, find the last term. Recall that the direct formula for an arithmetic sequence is given by:

x_n=a+d(n-1)

Since the initial term is 13 and the common difference is 7:

x_n=13+7(n-1)

Substitute:

\displaystyle S = \frac{n}{2}\left(a + (13+7(n-1)\right)

We are given that the initial term is 13 and the sum is 2613. Substitute:

\displaystyle (2613)=\frac{n}{2}((13)+(13+7(n-1)))

Solve for <em>n</em>. Multiply both sides by two and combine like terms:

5226 = n(26+7(n-1))

Distribute:

5226 = n (26+7n-7)

Simplify:

5226 = 7n^2+19n

Isolate the equation:

7n^2+19n-5226=0

We can use the quadratic formula:

\displaystyle x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}

In this case, <em>a</em> = 7, <em>b</em> = 19, and <em>c</em> = -5226. Substitute:

\displaystyle x  =\frac{-(19)\pm\sqrt{(19)^2-4(7)(-5226)}}{2(7)}

Evaluate:

\displaystyle x = \frac{-19\pm\sqrt{146689}}{14} = \frac{-19\pm 383}{14}

Evaluate for each case:

\displaystyle x _ 1 = \frac{-19+383}{14} = 26\text{ or } x _ 2 = \frac{-19-383}{14}=-\frac{201}{7}

We can ignore the second solution since it is negative and non-natural.

Therefore, there are 26 terms in the arithmetic series.

Our answer is A.

6 0
2 years ago
Who was the fast person in the race
vazorg [7]
Rhiana because she had the least amount of time
6 0
3 years ago
Read 2 more answers
I need help with this problem from the calculus portion on my ACT prep guide
LenaWriter [7]

Given a series, the ratio test implies finding the following limit:

\lim _{n\to\infty}\lvert\frac{a_{n+1}}{a_n}\rvert=r

If r<1 then the series converges, if r>1 the series diverges and if r=1 the test is inconclusive and we can't assure if the series converges or diverges. So let's see the terms in this limit:

\begin{gathered} a_n=\frac{2^n}{n5^{n+1}} \\ a_{n+1}=\frac{2^{n+1}}{(n+1)5^{n+2}} \end{gathered}

Then the limit is:

\lim _{n\to\infty}\lvert\frac{a_{n+1}}{a_n}\rvert=\lim _{n\to\infty}\lvert\frac{n5^{n+1}}{2^n}\cdot\frac{2^{n+1}}{\mleft(n+1\mright)5^{n+2}}\rvert=\lim _{n\to\infty}\lvert\frac{2^{n+1}}{2^n}\cdot\frac{n}{n+1}\cdot\frac{5^{n+1}}{5^{n+2}}\rvert

We can simplify the expressions inside the absolute value:

\begin{gathered} \lim _{n\to\infty}\lvert\frac{2^{n+1}}{2^n}\cdot\frac{n}{n+1}\cdot\frac{5^{n+1}}{5^{n+2}}\rvert=\lim _{n\to\infty}\lvert\frac{2^n\cdot2}{2^n}\cdot\frac{n}{n+1}\cdot\frac{5^n\cdot5}{5^n\cdot5\cdot5}\rvert \\ \lim _{n\to\infty}\lvert\frac{2^n\cdot2}{2^n}\cdot\frac{n}{n+1}\cdot\frac{5^n\cdot5}{5^n\cdot5\cdot5}\rvert=\lim _{n\to\infty}\lvert2\cdot\frac{n}{n+1}\cdot\frac{1}{5}\rvert \\ \lim _{n\to\infty}\lvert2\cdot\frac{n}{n+1}\cdot\frac{1}{5}\rvert=\lim _{n\to\infty}\lvert\frac{2}{5}\cdot\frac{n}{n+1}\rvert \end{gathered}

Since none of the terms inside the absolute value can be negative we can write this with out it:

\lim _{n\to\infty}\lvert\frac{2}{5}\cdot\frac{n}{n+1}\rvert=\lim _{n\to\infty}\frac{2}{5}\cdot\frac{n}{n+1}

Now let's re-writte n/(n+1):

\frac{n}{n+1}=\frac{n}{n\cdot(1+\frac{1}{n})}=\frac{1}{1+\frac{1}{n}}

Then the limit we have to find is:

\lim _{n\to\infty}\frac{2}{5}\cdot\frac{n}{n+1}=\lim _{n\to\infty}\frac{2}{5}\cdot\frac{1}{1+\frac{1}{n}}

Note that the limit of 1/n when n tends to infinite is 0 so we get:

\lim _{n\to\infty}\frac{2}{5}\cdot\frac{1}{1+\frac{1}{n}}=\frac{2}{5}\cdot\frac{1}{1+0}=\frac{2}{5}=0.4

So from the test ratio r=0.4 and the series converges. Then the answer is the second option.

8 0
1 year ago
Other questions:
  • Solve - 3/5 x + 1/5 &gt; 7/20
    10·2 answers
  • Your new flashlight uses a parabolic mirror which can be modeled by the equation (x – 2)² = 5(y + 1), where x and y are measured
    12·2 answers
  • -8+4-7+9-2+(-5)<br> What is the answer<br> -8+4-7+9-2+(-5)
    8·1 answer
  • Which values of q and x result in an equation with no solutions px-45=qx+75
    12·1 answer
  • What is p+1 +8 = 8p+16
    8·1 answer
  • What is the GCF of 9, 27,and 63
    5·2 answers
  • 21×9=9×21 what property is used
    6·1 answer
  • Erik and Nita are playing a game with numbers. In the game, they each think of a random number from zero to 20. If the differenc
    11·2 answers
  • What kind of function is 3y-2=x+7
    12·1 answer
  • Write the equation of a line with a slope of 5 and a y-intercept of (0, 3). Write the equation in slope-intercept form.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!