Answer:
![1. \quad\dfrac{1}{k^{\frac{2}{3}}}\\\\2. \quad\sqrt[7]{x^5}\\\\3. \quad\dfrac{1}{\sqrt[5]{y^2}}](https://tex.z-dn.net/?f=1.%20%5Cquad%5Cdfrac%7B1%7D%7Bk%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%5C%5C%5C%5C2.%20%5Cquad%5Csqrt%5B7%5D%7Bx%5E5%7D%5C%5C%5C%5C3.%20%5Cquad%5Cdfrac%7B1%7D%7B%5Csqrt%5B5%5D%7By%5E2%7D%7D)
Step-by-step explanation:
The applicable rule is ...
![x^{\frac{m}{n}}=\sqrt[n]{x^m}](https://tex.z-dn.net/?f=x%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%3D%5Csqrt%5Bn%5D%7Bx%5Em%7D)
It works both ways, going from radicals to frational exponents and vice versa.
The particular power or root involved can be in either the numerator or the denominator. The transformation applies to the portion of the expression that is the power or root.
Answer:
900
Step-by-step explanation:
4F + F =1125
5F = 1125
F=225
C=4F
C=4(225)=900
900 + 225=1125
Answer:
20 m
Step-by-step explanation:
4(3+2) = 20
Answer:
4
Step-by-step explanation: