Answer:
Option 2: (1, 0) and (0, -5)
Step-by-step explanation:
Let's solve this system of equations using the elimination method.
Start by labelling the two equations.
5x -y= 5 -----(1)
5x² -y= 5 -----(2)
(2) -(1):
5x² -y -(5x -y)= 5 -5
Expand:
5x² -y -5x +y= 0
5x² -5x= 0
Factorise:
5x(x -1)= 0
5x= 0 or x -1= 0
x= 0 or x= 1
Now that we have found the x values, we can substitute them into either equations to solve for y.
Substitute into (1):
5(0) -y= 5 or 5(1) -y= 5
0 -y= 5 or -y= 5 -5
y= -5 or -y= 0
y= 0
Thus, the solutions are (0, -5) and (1, 0).
Answer:
I think it's 3.5, but this information is super vague, so try to uhh scroll down to see if there's more information
Step-by-step explanation:
Answer B: The graph crosses the y-axis at (0,5), increasing form x=-10 to x=2 and remaining constant from x=2 to x=10.
According to the identity if a+b+c=0
then a3+b3+c3=3abc
a3+b3+c3/abc=3
a2*a/bc*a+b2*b/ca*b+c2*c/ab*c=3
cancel a,b,c in all the fraction then you get
<span>a²/bc+b²/ca+c²/ab=3.
</span>hence proved
I need help with this asw