I think C
<span>Just because this set of data showed a
positive correlation does not mean that the relationship is
positive for all sets of data concerning study time and
Regents scores. There may be sets of data
that show that there is NOT a positive correlation between hours
studying and better Regents scores</span>
Answer:
2nd one
Step-by-step explanation:
Check the picture below.
so then, the perimeter of that hexagon will just be the sum of all its 6 sides, or namely 3⅖ + 3⅖ + 3⅖ + 3⅖ + 3⅖ + 3⅖, or just 6( 3⅖ ).
![\bf \textit{area of a regular polygon}\\\\ A=\cfrac{1}{2}ap~~ \begin{cases} a=apothem\\ p=perimeter\\[-0.5em] \hrulefill\\ a=3\\ p=6\left(3\frac{2}{5} \right) \end{cases}\implies A=\cfrac{1}{2}(3)\left[ 6\left(3\frac{2}{5} \right) \right]\implies A=\cfrac{1}{2}(3)\left[ 6\left(\cfrac{17}{5} \right) \right] \\\\\\ A=\cfrac{1}{2}(3)\left(\cfrac{102}{5} \right)\implies A=\cfrac{1}{2}\left( \cfrac{306}{5} \right)\implies A=\cfrac{153}{5}\implies A=30\frac{3}{5}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B2%7Dap~~%20%5Cbegin%7Bcases%7D%20a%3Dapothem%5C%5C%20p%3Dperimeter%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D3%5C%5C%20p%3D6%5Cleft%283%5Cfrac%7B2%7D%7B5%7D%20%5Cright%29%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283%29%5Cleft%5B%206%5Cleft%283%5Cfrac%7B2%7D%7B5%7D%20%5Cright%29%20%5Cright%5D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283%29%5Cleft%5B%206%5Cleft%28%5Ccfrac%7B17%7D%7B5%7D%20%5Cright%29%20%5Cright%5D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B2%7D%283%29%5Cleft%28%5Ccfrac%7B102%7D%7B5%7D%20%5Cright%29%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%5Cleft%28%20%5Ccfrac%7B306%7D%7B5%7D%20%5Cright%29%5Cimplies%20A%3D%5Ccfrac%7B153%7D%7B5%7D%5Cimplies%20A%3D30%5Cfrac%7B3%7D%7B5%7D)
The slope of the line is calculated using
y2 - y1 / x2 - x1
Substituting the given values
-8 - 27 / 5 - 0 = -7
The rate of change or the slope is -7
And the initial value is the value of y when x is 0. From the first coordinates, the initial value is 27.