Answer:
t≈8.0927
Step-by-step explanation:
h(t) = -16t^2 + 128t +12
We want to find when h(t) is zero ( or when it hits the ground)
0 = -16t^2 + 128t +12
Completing the square
Subtract 12 from each side
-12 = -16t^2 + 128t
Divide each side by -16
-12/-16 = -16/-16t^2 + 128/-16t
3/4 = t^2 -8t
Take the coefficient of t and divide it by 8
-8/2 = -4
Then square it
(-4) ^2 = 16
Add 16 to each side
16+3/4 = t^2 -8t+16
64/4 + 3/4= (t-4)^2
67/4 = (t-4)^2
Take the square root of each side
±sqrt(67/4) =sqrt( (t-4)^2)
±1/2sqrt(67) = (t-4)
Add 4 to each side
4 ±1/2sqrt(67) = t
The approximate values for t are
t≈-0.092676
t≈8.0927
The first is before the rocket is launched so the only valid answer is the second one
B. 2 …………………………,.,,,,,.,.,.,.,.,,,.,
Answer:
Neighborhood Q appears to have a bigger family size
Step-by-step explanation:
Mean = the sum of all data values divided by the total number of data values
Number of families in Neighborhood Q = 9
Mean family size of Neighborhood Q:
= (2 + 5 + 4 + 3 + 2 + 5 + 3 + 6 + 5) ÷ 9
= 35 ÷ 9
= 3.888888...
Number of families in Neighborhood S = 9
Mean family size of Neighborhood S:
= (2 + 3 + 2 + 3 + 7 + 2 + 3 + 3 + 2) ÷ 9
= 27 ÷ 9
= 3
The mean family size of Neighborhood Q is 3.88.. and the mean family size of Neighborhood S is 3. Therefore, Neighborhood Q appears to have a bigger family size as it's average family size is bigger than that of Neighborhood S.
Answer:
?
Step-by-step explanation:
I can't see anything attached but I know all angles of a triangle add up to 180 degrees. It probably doesn't help tho.