Christy should make at least 30 bracelets and at most 40 necklaces to maximize profit
<h3>How to determine how many bead of each type of bracelets and necklaces should Christy make to maximize his profit?</h3>
The given parameters can be represented in the following tabular form:
Bracelet (x) Necklace (y) Total
Labor (hour) 0.5 0.75 40
Profit 10 18
From the above table, we have the following:
Objective function:
Max P = 10x + 18y
Subject to:
0.5x + 0.75y <= 40
Because she wants to make at least 30 bracelets, we have:
x >= 30
So, we have:
Max P = 10x + 18y
Subject to:
0.5x + 0.75y <= 40
x >= 30
Express x >= 30 as equation
x = 30
Substitute x = 30 in 0.5x + 0.75y <= 40
0.5 * 30 + 0.75y <= 40
This gives
15 + 0.75y <= 40
Subtract 15 from both sides
0.75y <= 30
Divide by 0.75
y <= 40
Hence, Christy should make at least 30 bracelets and at most 40 necklaces to maximize profit
Read more about maximizing profits at:
brainly.com/question/13799721
#SPJ1
Answer:
2.83
Step-by-step explanation:
25 round off is equal to 30
so we can write 2.825 = 2.83 in form of 2 digits
83 round off to 80
2.83 is equal to 2.8
Answer:
6
Step-by-step explanation:
Answer:
$20.40
Step-by-step explanation:
20% off means that the new price of the skirt will be 80% of the original price:
$30(100% – 20%) = $30(80%)
Converting the percent to a decimal gives:
$30(0.8) = $24.00
There is an additional 15% off the sale price of $24.00, so the final price is 85% of the sale price:
$24(100% – 15%) = $24(85%)
Again converting the percent to a decimal gives:
$24(0.85) = $20.40