More specifically 32 goes into 82, 2.5625 times.
Answer:
since the formula of a triangle is ab/2 and since there is four simply multiply 3x4 which is 12 and divide by 2 which is 6 and 6x4= 24 and add that tp 9 since the base is just 3x3 which results for an answer of 33.
Step-by-step explanation:
Answer:
Yes, one of the properties of determinants is that they are real numbers (including zero) not matrix. This if the entries of the matrix are real. Determinants can be both positive or negative numbers.
Step-by-step explanation:
Since segment AC bisects (aka cuts in half) angle A, this means the two angles CAB and CAD are the same measure. I'll refer to this later as "fact 1".
Triangles ABC and ADC have the shared segment AC between them. By the reflexive property AC = AC. Any segment is equal in length to itself. I'll call this "fact 2" later on.
Similar to fact 1, we have angle ACB = angle ACD. This is because AC bisects angle BCD into two smaller equal halves. I'll call this fact 3
----------------------
To summarize so far, we have these three facts
- angle CAB = angle CAD
- AC = AC
- angle ACB = angle ACD
in this exact order, we can use the ASA (angle side angle) congruence property to prove the two triangles are congruent. Facts 1 and 3 refer to the "A" parts of "ASA", while fact 2 refers to the "S" of "ASA". The order matters. Notice how the side is between the angles in question.
------------------------
Once we prove the triangles are congruent, we use CPCTC (corresponding parts of congruent triangles are congruent) to conclude that AB = AD and BC = BD. These pair of sides correspond, so they must be congruent in order for the entire triangles to be congruent overall.
It's like saying you had 2 identical houses, so the front doors must be the same. The houses are the triangles (the larger structure) and the door is an analogy to the sides (which are pieces of the larger structure).
Hi, I actually just took the test and got 100%
Remember: When plotting the points for this equation, make sure to always first plot the ones that correspond to the first linear equation, and then plot the ones that correspond to the second linear equation.
The points on the line should be for the first linear equation, (4,0) and (8,0). I got this answer by first converting the linear equation, 2x+y=8 from standard form to slope-intercept form. To do this, I subtracted 2x from both sides of the equation. So now it reads as y=8-2x. After this step was completed, I then graphed my first linear equation.
The points on the line should be for the first linear equation, (2,4) and (6,6).
I got this answer by first converting the linear equation, -x+2y=6 into slope-intercept form. To do this, I subtracted -x from both sides of the equation. Then I had to divide the 2 into both -x and 6. So now it reads as y= 6/2-x/2. After this step was completed, I then graphed my second and final linear equation.
I hope this helps!